B

2ol 15 93 15:48

PAGE.@B3

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

catlecton of information, inciuding suggestions 1o¢ reduding this burdon, To Wathington Hesdquertens farvices Diteqtorate
Davis Highwaty, SUiTe 1204, Arlington, VA 22202-1302. ¢nd 10 the Office of Managemant and Budget, Faoerwors Raduction Project (0704-0 138), Washington, 3¢ 20563,

Public repcrting burden for this Collection of information K cstrimated to average 1 ‘\Quf £EF 1260ONSE, inciding the tme igre rovicwing ine:truclion:.. searching existing dats soucces,
gatherng and maintaining thc date needed, and compieting and revicwing the zallcction of infarmarion. Send commenrs r2qarding this burden rstimate or 3oy tther ssoect of this
Of InfOTMaTIon DOParations and Keoorts, 1215 Jeffecson

1. AGENCY USE ONLY (Leave bfank) 2. REPORT DATE /9(_7£/ 3. REPQRT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Software Reengineering Risks Taxonomy BCPW‘r

6. AUTHOR(S)
Joan Smith, DISA/JIEO/CFSW
The MITRE Corporation

Authors: Ms.
Mr. Shawn Bohner,

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

Defense Information Systems Agency
JIEO/Center for Software, Code TXE R
701 South Courthouse Road
Arlington, VA 22204-2199

$. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRES
same as

, O 6

REPORT NUMBER

é;‘)O ve .

8. PERFORMING ORGANIZATION

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES " i
Field 25 ghould contain the identifier CIM (Collectiom), as
detailed in A. Washington DTIC-OCS IOM, deted April 11, 1994.

123. DISTRIBUTION / AVAWLABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public rélease;
Distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This document describes a comprehensive taxonomy of
software reengineering risks for clarifying software
reengineering decisions for automated information
systems. The taxonomy is designed to assist program
and project managers in the Department of Defense
with identification of risks in their efforts to
modernize automated information systems.

BoOAKCLE R s)

9920123 069

U .
Vb x B3

14, SUSJECT TEO™A®
Subject Terms: software reengineering risk, software
reengineering risk identification, project planning,
reengineering, reverse engineering.

15. NUMBER OF PAGES

16. PRICE COOE

17. SECURITY CLASSIFICATION
OF REPORT

unclassified

18, SECURITY CLASSIFICATION
OF THIS PAGE

unclassified

9. SECURITY CLASSIFICATION
OF ABSTRACT

unclassified

it st rere—————
28. UMITATION OF ABSTRACT

NSN $540.01-280-5500

Standard Form 298 (Rev 2-89)
Prascribad by ANSE Std £39.18

Defense Information Systems Agency
Joint Interoperability and Engineering Organization
Center for Software
701 South Courthouse Road; Arlington, VA 22204-2199

Center for Information Management
Automated Information Systems
Software Reengineering
Risks Taxonomy Report

Version 1.0

<

Software Systems Engineering Department
Software Engineering Technology Division

Prepared by:

FOREWARD

The Center for Information Management is now the Center for Software. It remains a part of
the Joint Interoperability and Engineering Organization, Defense Information Systems
Agency. Since CIM Software Reengineering Risks Taxonomy was presented at the 6th
Annual Software Technology Conference, 1994, the title and internal references to the
proponent organization remain as presented.

The Center For Software, Software Systems Engineering Department, Software Reengineering
Program is located at 5600 Columbia Pike, Falls Church, VA, 22041.

Accesion For

NTIS CRA& %
DTIC TAB
Unannounced |
Justification

By
Distribution |

Availability Codes

Avail and/or
Dist Special

13-/

ACKNOWLEDGEMENT

The Automated Information Systems Software Reengineering Risks Taxonomy was prepared
by Shawn A. Bohner, Stan Hopkins, and Steve Miller of the Mitre Corporation in
coordination with the Defense Information Systems Agency, Center for Information
Management, Software Systems Engineering Directorate, Reengineering Division (TXER).
Subsequent editorial comments have been added to the original document by Joan G. Smith,
TXER. Ms. Smith wishes to thank Cynthia Wright and Tamra Moore of TXER, Paul Johson
and Lt. Colonel Dennis Bowers, USAF, of the Software Systems Engineering Directorate for
their reviews and comment which significantly contributed to the development of the
Taxonomy.

EXECUTIVE SUMMARY

The Department of Defense (DoD) Corporate Information Management (CIM) program
concentrates on reducing non-value-added work and costs originally highlighted in the
Secretary's of Defense Management Report (DMR) to the President. In support of CIM, the
Defense Information Systems Agency, Joint Interoperability and Engineering Organization,
Center for Information Management (DISA/JIEO/CIM) is chartered to provide information
management technical services to the DoD community. The DISA/JIEO/CIM Software
Systems Engineering Directorate, Reengineering Division is responsible for assessing and
promoting current reengineering technology in DoD modernization efforts.

This report is a result of joint effort by CIM and Mitre. It represents a comprehensive
taxonomy of reengineering risks for clarifying Automated Information Systems (AIS) software
reengineering decisions. The taxonomy is designed to assist program and project managers
with identification of risks in the AIS modernization efforts.

The report includes: an introduction, an overview of software reengineering, the software
reengineering risks taxonomy, an example on using the taxonomy, and a conclusion. The
introduction presents background information on the reengineering risks problem, outlines the
scope and audience of the report, and defines risk, software reengineering, and software
maintenance terms. The overview of the software reengineering addresses key points in
reengineering technology and current software reengineering techniques included in the
software reengineering taxonomy. The software reengineering risks taxonomy section
describes the key points of the taxonomy and presents tables for each of the five key software
reengineering risk areas: Planning, Process, Personnel, Product, and Technology. The U.S.
Air Force's Weighted Airman Promotion System (WAPS) reengineering project, which was
part of the fiscal year 1993 tasking, is presented as an example use of the taxonomy. The
report concludes with some comments on the taxonomy and its potential use.

There are a number of techniques that fall under the term reengineering including
redocumentation, restructuring, reverse engineering, forward engineering, and translation.

This report includes definitions and a brief discussion of these topics, along with perspectives
on software reengineering as a whole. Additionally, reengineering for reuse and migration are
described as composite techniques that consist of both reverse engineering and forward
engineering for specific purposes.

There is not a great deal of experiential data to draw upon for identifying risks due to the
relative immaturity of the software reengineering discipline. Two key elements of risk
considered in this report are impact and exposure. The report focuses on internal risk (risk
associated with the product and its production) rather than external risk (those associated with
the failure of the product). The software reengineering risks taxonomy concentrates on risk
identification, an essential activity for effective risk assessment, risk analysis, and risk
management.

A limited number of published works that directly address software reengineering risks are
available. However, after reviewing reengineering and risk literature, interviewing
information systems personnel, and brainstorming with staff experienced in software
reengineering, many software reengineering risk issues were identified. A synthesis and
organization of the collected risk information led to the classification of risk areas by the five
major software reengineering risk categories. The taxonomy is by no means exhaustive but
does constitute a relatively comprehensive set of software reengineering risks.

The taxonomy provides a means to identify, classify,and organize software reengineering risks
to assist project managers and staff involved in AIS software reengineering in understanding
their reengineering situations. It simplifies the task of identifying reengineering risks and
assists in preparing for estimation and evaluation of software reengineering risks. Table ES-1
summarizes the contents and organization of the software reengineering risks taxonomy
detailed in this report.

Table ES-1. Summary of Software Reengineering Risks Taxonomy

Risk Category Risk Areas

Planning Reengineering Strategy
Reengineering Approach

Reengineering Goals

Process Preparation Activities
Reverse Engineering
Forward Engineering

Personnel Availability

Knowledge - Experience/Training
Motivation

Teaming

Product Application Characteristics
Technical Infrastructure Implications
Standards

Characteristics of Data

Enterprise Model Implications

Age

Intended Longevity

Importance to Organization

Technology Methods
Tools

Note: In this report, an enterprise model is defined as a high-level model of an organization's information resources documented by an
enterprise’s data subject areas (entity types or classes), functions, processes, and their inter-relationships. An enterprise model provides
guidance to information systems planning and can facilitate reengineering by providing focus and key areas to consider. Detailed activity and

ii

data models are used during business process reengineering and are reconciled with the organization's enterprise model. If an organization
does not have an enterprise model a risk of not selecting appropriate information systems is present when performing reengineering. An
enterprise model is a key factor when establishing an integrated, shared data environment and should be considered when planning for
reengineering.

The Risks Taxonomy identifies risks associated with the software reengineering process defined in the CIM Software Systems Reengineering
Process Model (DISA/CIM 1993). The Model is in IDEF0 format which consists of activities and interfaces.

The planning for a software reengineering project consists of selecting a reengineering
strategy and appropriate approaches to achieve identified strategic reengineering goals. The
risks identified in the planning category are associated with the "Define Project” activity in
the CIM Software Systems Reengineering Process Model (DISA/CIM 1993). Impacts of
planning risks are described in terms of effort, schedule, and costs. Poor planning is a major
risk issue for a system project and has an increased emphasis during reengineering due to the
level and amount of change associated with the project

The reengineering process risks category identifies risks associated with the critical software
reengineering process activities. The risks identified in the process risk category impact the
majority of the activities in the CIM Software Systems Reengineering Process Model. The
primary software reengineering process risk areas in this category are Preparation A ctivities,
Reverse Engineering, and Forward Engineering. By not establishing, organizing, and
executing the process effectively, the reengineering effort is exposed to the risk of
considerable delays (false starts, redundant activities, etc.) and greatly influences the quality
of the resulting product.

Personnel risk issues are critical in software reengineering efforts. The risks identified in the
personnel risks category impact the "Project Team" and "Allocate Resources” activities as
defined in the CIM Software Systems Reengineering Process Model. Reengineering staff
availability, knowledge, motivation, and teaming all play key roles in the success of a
software reengineering project. The impact of not having available, knowledgeable, and
motivated staff in the right teaming arrangement is a software reengineering project that
suffers low productivity, poor quality products, and potentially dissatisfaction with the
resulting system.

Characteristics of the product influence the potential exposure to software reengineering risks.
The risks identified in the product risks category impact the majority of the interfaces in the
CIM Software Systems Reengineering Process Model. The difference between the existing
and target product characteristics is a primary driver is reengineering effort and costs.
Relatively minor changes in the product are likely to be less risk extensive when compared to
projects with many substantial changes in the product. Other implications that involve the
product, such as its importance to the organization and its support to the enterprise as a
whole, may also introduce reengineering risks.

Software reengineering technology risks are among the most misunderstood of the risks

detailed in this taxonomy. The risks identified in the technology risk category impact he
"Identify Methodologies and Tools" activity, and also "Available Reengineering Technology",

iii

"Methodologies", and "Tools" as defined in the CIM Software Systems Reengineering Process
Model. Technology can be effective in expediting a software reengineering project, but when
relied upon inappropriately it can expose the project to considerable additional risk. The
management of expectations surrounding reengineering tools is critical, especially in today's
climate of producing integrated tools designed for all situations. If expectations are not
managed, the impact on time, effort, and costs can be devastating.

The demonstration of the use of a software reengineering risks taxonomy is included as an
example of a recently reengineering effort for the United States Air Force. Table ES-2
summarizes the example of using the Software Reengineering Risks Taxonomy. The
Weighted Airman Promotion System (WAPS) was a twenty-year-old COBOL system running
on proprietary hardware. The redesigned WAPS is to run on an AT&T 3B2 UNIX machine,
incorporating relational database technology, with Ada code.

Table ES-2. Example Use of Software Reengineering Risks Taxonomy

The WAPS reengineering project was executed as a complete redesign that
pursued multiple disparate goals and objectives. The amount and nature of
the change attempted by the project introduced a high degree of risk to the

Planning

Risk Degree:

High

planning risk areas.

Process

Risk Degree:

The software reengineering process used during the WAPS project was
initially extensively a manual process and focused on data and database
conversion issues. The reverse engineering and forward engineering

Medium/ High activities were able to take advantage of CASE tools to automate part of
the process. The process risk areas of the WAPS project were exposed to
a medium to high level of risk due to the manual nature of the majority of
the process and the relatively new technologies used.
Personnel The main risk issues associated with the personnel during a reengineering

Risk Degree:

project: availability, knowledge, experience, training, and teaming; were
mitigated by the selection and organization of the WAPS project team.

Low This risk category was of a relatively low exposure during the WAPS
project.
Product The WAPS main product related risks areas identified by the taxonomy

Risk Degree:

were in the application characteristics, technical infrastructure, and
standards areas. The WAPS reengineering project converted a medium

High sized legacy system to a new platform using minimal system services.
The documentation was converted to a standard (DoD-2167A) format and
the data architecture was significantly altered.

Technology The technology used by the WAPS reengineering project was determined

Risk Degree:
Low/Medium

by the overall goals of the project and the selected approach. The WAPS
project was a reengineering effort that migrated the application to a new
platform. The WAPS project was a data centered project that was
relatively well supported by tools and therefore subject to somewhat less
risk.

I\

Although the risk was high for this example, excellent mitigation strategies facilitated risk
management and control. For example, a data reengineering technical approach was
employed based on the amount of code that would be replaced by the relational database
system. The WAPS redesign project was a success because of the attention paid to risks, risk
mitigation strategies, and highly motivated and professional staff. This type of success is
more likely when software reengineering risks are identified early and risk avoidance plans
are put in place.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

SECTION
1 ' Introduction

1.1 Purpose
1.2 Background
1.3 Scope
1.4 Definitions and Terminology
1.4.1 Risk Terms
14.2 Software Reengineering Terms
143 Software Maintenance Terms
1.5 Organization of the Report

2 Overview of Software Reengineering
2.1 Redocumentation
2.2 Restructuring
2.3 Reverse Engineering
2.4 Forward Engineering
2.5 Translation
2.6 Reengineering for Reuse
2.7 Migration

3 Reengineering Risks Taxonomy
3.1 Planning Risk Category
3.2 Process Risk Ctegory
3.3 Personnel Risk Category
3.4 Product Risk Category
3.5 Technology Risk Category
4 Example Using the Taxonomy
5 Conclusion

List of References

Index

vii

PAGE

70

71

73

LIST OF FIGURES

SECTION
1
Figure 1. Reengineering Cost/Benefit Over Time
Figure 2. Software Reengineering and Levels of Information
Figure 3. Software Redocumentation
Figure 4. Software Restructuring
Figure 5. Software Reverse Engineering
Figure 6. Software Forward Engineering
Figure 7. Software Translation
Figure 8. Software Reengineering for Reuse

Figure 9. Software Migration

Figure 10. Five Sides of Software Reengineering Risks
Figure 11. Major Software Systems Reengineering Process Activities

Figure 12. Relative Risk and Time for Reengineering Technology

viii

PAGE

10
12
12
13
14
14
15

16

20
27

51

LIST OF TABLES

TABLE PAGE
Table 1. Software Reengineering Planning Risks 23
Table 2. Software Reengineering Process Risks 29
Table 3. Software Reengineering Personnel Risks 38
Table 4. Software Reengineering Product Risks 42
Table 5. Software Reengineering Technology Risks 52
Table 6. Summary of WAPS Migration Characteristics 60

Table 7. WAPS Risk Taxonomy Example 61

ix

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 1

INTRODUCTION

1.1 PURPOSE

The purpose of this report is to present a relatively comprehensive taxonomy of software
reengineering risk issues for clarifying Automated Information System (AIS) software
reengineering decisions. This report assists program and project managers involved in AIS
modernization efforts in identifying potential software reengineering risks and posturing to
avoid them.

1.2 BACKGROUND

Software reengineering is increasingly becoming an important capability as information
systems development and maintenance organizations attempt to contain maintenance costs,
preserve investments in their software assets, and modernize their information systems (Ulrich
1991). Enormous investments in Department of Defense (DoD) AIS have created formidable
maintenance and evolution liabilities that the charter of Defense Information Systems Agency
(DISA) addresses. Even with shrinking software budgets, the DoD AISs are in more demand
today than ever before. Yet current AISs are aging and becoming outdated. Costs of
maintaining these systems escalate to the point of inhibiting their evolution. It is also
recognized that many of these systems replicate functions of other AISs in the DoD.
Consolidation of these systems appears to have a great potential for reducing costs.

Given the need to evolve AISs, there are a few alternatives for proceeding.

1. Remain on the path of continued redevelopment as the business needs of the DoD
evolve. Risks of this redevelopment alternative include high costs of developing
new systems (often while maintaining old ones) and include the inclination toward
stovepipe systems that require high costs to operate and maintain. Even when new
development integrates existing systems, many of these risks are present.

2. Patch and extend functionality on existing systems with continued maintenance. The
risks here include the accelerating costs of maintaining patched-up systems (possibly
limited by a finite budget while failing to satisfy essential mission requirements),
reduced reliability (perhaps resulting in downtime and safety costs). Ultimately, the
second alternative leads to some of the same consequence as the first.

Cost

Redevelopment

v
..~ Continued
Maintenance

Cost Cree?

Reengineering

Figure 1. Reengineering Cost/Benefit Over Time

3. Reengineering existing AISs is another alternative for addressing needed changes.
Software reengineering offers potentially lower risks (and costs) than the first two
alternatives, contingent on the characteristics of the effort. Categories of software
reengineering risks include planning, process, personnel, product, and technology.
Knowing risk issues based on these categories helps clarify the decision between
reengineering and the other two alternatives.

Figure 1 illustrates some cost trends over time associated with software redevelopment,
continued maintenance, and reengineering. Although the trends in this diagram are not based
on any directly measured data, they express the generally accepted experience of industry and
government (Bush 1988). The large curve represents redevelopment costs since it is typically
expensive and time consuming to redevelop software systems. The smaller projection
represents costs associated with software reengineering where it is feasible. The straight line
across represents continued maintenance. One example of this type of trend is discussed in a
case study by DST Systems, Incorporated (Rochester and Douglas 1991), where it was
determined that the cost to redevelop the system would cost $50 million and take several
years to complete. Instead, DST Systems analyzed their applications portfolio, identified key
areas needing improvements, and reengineered the system for $12 million.

Notice that the software reengineering cost may be smaller and the product may be available
sooner, but the level of cost improvement is likely to be less than full redevelopment. This
trend is because reengineering an “existing system” often retains the system's inefficiencies
over time. Redevelopment is an alternative that will address these inefficiencies and produce

a more optimal implementation.

Also notice that each of the trend lines has an associated dotted line that indicates the cost
creep of evolving systems. This represents the more likely trend since the software will
gradually degrade with maintenance changes once it has been placed in operation (unless
proactively controlled) (Lehman, 1980; Horowitz, 1991; Sneed, 1991). Cost creep is an
accelerating curve and is thus more pronounced for the continued maintenance alternative
since it enters maintenance sooner than reengineering or redevelopment. All three situations
are subject to cost creep unless the software maintenance characteristics are proactively
controlled (Bohner 1992).

The need to enhance functionality, to improve efficiency or maintainability, to provide greater
interoperability with other systems, to consolidate multiple systems with overlapping
functionality, and to migrate towards open systems environments can influence reengineering
decisions. To serve those making software reengineering decisions, this report offers a
taxonomy outlining critical software reengineering risk issues to consider.

1.3 SCOPE

This report concentrates on presenting software reengineering risks in the context of DoD
Automated Information Systems from the DISA/JIEO/CIM data intensive systems perspective.
Although this software reengineering taxonomy is relatively comprehensive, it is not
exhaustive and does not cover all known risks. This report does not focus on software risks
in general nor does it purposely duplicate risks from other fields. Instead, it focuses on risks
that directly affect software reengineering efforts.

Recognizing that software reengineering seldom operates to the exclusion of other activities,
references to address influential aspects from other reengineering disciplines are included.
Since automated information systems support business processes, process implication
assumptions from the improvement (incremental change) and innovation (radical change)
perspectives are included. There is also recognition of systems engineering implications that
potentially influence and are influenced by software reengineering decisions. Although these
are sometimes mentioned, they are not an emphasis of this work.

The intended audience is DISA and Central Design Activity (CDA) staff and project
managers involved in AIS software reengineering or obtaining software reengineering
services. Much of the emphasis is on legacy systems from the software maintenance

perspective. With the DoD's intent to consolidate large information systems, there is an
emphasis on legacy systems, conversion, and migration in the software reengineering risks
taxonomy.

1.4 DEFINITIONS AND TERMINOLOGY

In this part of the introduction we examine some terms and definitions used in the report. To
set the reader's perspective on risk identification, we first discuss definitions of risk and other
risk terminology. We then briefly outline some definitions of reengineering terms used as a
preface to the section on reengineering technology. Finally, some software maintenance terms
are described to complete the discussion.

1.4.1 Risk Terms

“Risk” is a term that is examined in many fields for various purposes ranging from analyzing
economic decisions to determining medical procedures to engaging in war. To this end,
Rowe defines risk as “the potential for realization of unwanted, negative consequences of an
event” in his book A natomy of Risk (Rowe 1988). Similarly, DoD MIL-STD-1574 defines
risk as a “measure of vulnerability to loss, damage, or injury caused by a dangerous element
or factor” (MIL-STD-1574). The Defense Systems Management College (DSMC) defines
risk as “the probability of an undesirable event occurring (likelihood) and the severity of the
consequence of the occurrence (impact)” (DSMC 1989). These are fine for a general
perspective on risk, but are there some software-related issues to consider when examining
software reengineering risks.

Charette defines formally software risk as “The triplet <s;, 1;, x,>, where s; represents the
scenarios of what can go wrong, I, represents the generic likelihood of the scenarios
happening, and x; represents a measure of the consequences of the 'th' scenario. The set of
all such triplets forms the totality of risk to the software development being formed.”
(Charette 1989). Said another way, risk is a function of exposure to loss, chance of loss, and
magnitude of loss. Similarly, Chittister of the Software Engineering Institute's Risk Program
defines risk as having two primary factors, “the probability or likelihood that an event will
occur and the severity of the adverse effects resulting from its occurrence” (Chittister 1992).

In her paper on software maintenance risks (Sherer 1990), Sherer suggests “Risk is measured
as a product of the frequency or likelihood of loss and the magnitude or level of exposure.”
In this case, software risk is defined as the potential loss due to a failure during a specific
time period. Sherer goes further to suggest that there are internal risks (those associated with
the product and its production) and external risk (those associated with the failure of the
product).

The two key elements of risk that we consider in this report are impact and exposure. The
likelihood of an undesirable event occurring is beyond the scope of this report since there is

4

insufficient data to support probability of occurrence. Additionally, we focus on internal risks
and occasionally mention external risks where pertinent. Otherwise, there would be
considerable time spent enumerating and detecting the vast number of environmental risks
associated with software. External risks are covered in Charette's book, “Software
Engineering Risk Analysis and Management” (Charette 1989) and in the DSMC document
entitled, “Risk Management, Concepts, and Guidance” (DSMC 1989).

Since the software reengineering risks taxonomy in this report concentrates on risk
identification, we now examine where it fits in the context of risk management. According to
Charette (Charette 1989), risk management is separate from risk analysis and risk
identification is part of risk analysis. According to Boehm's terminology (Boehm 1989), risk
management is made up of assessment and control. Risk assessment involves identification,
analysis, and prioritization. Risk control involves management planning, resolution, and
monitoring. According to the DSMC (DSMC 1989), risk management is organized into the
collection of activities supporting planning, assessment, analysis, and control. For DSMC,
risk identification falls under risk assessment. It is important to notice that risk identification
represents the first step in all of these approaches. This indicates that risk identification is an
essential activity to risk assessment, risk analysis, and risk management. Moreover, risk
identification must take place before effective risk management can occur.

1.4.2 Software Reengineering Terms

The term “software reengineering” has become widely used to describe anything from a
software maintenance change to complete redevelopment with no use of existing software
artifacts. Arnold defines software reengineering as “any activity that (1) improves one's
knowledge of software, or (2) prepares or improves the software itself, usually for increased
maintainability, reusability, or evolvability.” (Arnold 1993). Chikofsky and Cross define-
reengineering as “The examination and alteration of a subject system to reconstitute it in a
new form and the subsequent implementation of the new form.” (Chikofsky and Cross 1990).
The CIM Information Systems Criteria for Applying Software Reengineering (DISA/CIM
1993a) extends this to include “The process encompasses a combination of other processes
such as reverse engineering, forward engineering, redocumentation, and translation. The goal
is to improve the software system (functionality, performance, or implementation).”
Attempting a more pragmatic view, we use software reengineering to describe substantial
change in major software architectural components of a software system (e.g., source
language, operating system, database management system, etc.) or substantial improvements
to important attributes of a system (e.g., software maintainability, portability, quality, etc.).

There are a number of techniques that fall under the term reengineering including
redocumentation, restructuring, reverse engineering, forward engineering, translation (also
known as conversion), reengineering for reuse, and migration. The first five terms outlined
below according to Chikofsky et al (Chikofsky and Cross 1990) and defined in the CIM
Information Systems Criteria for Applying Software Reengineering (DISA/CIM1993a) are
covered in more detail in Section 2.

Redocumentation “The creation or revision of a semantically equivalent representation
within the same relative abstraction level. The resulting forms of representation
are usually considered alternative views intended for a human audience.”
Redocumentation uses static analysis of source code to generate information for
aiding software maintainers in understanding the software.

Restructuring “The transformation from one representation form to another at the
same relative abstraction level, while preserving the subject system’s external
behavior.” More pragmatically, restructuring is the automated translation of an
unstructured program or other software artifact into its functionally equivalent
representation in a structured form.

Reverse engineering ‘“The process of analyzing a subject system to identify the
system’s components and their interrelationships, and create representations of the
system in another form or at a higher level of abstraction.” Reverse engineering
recreates the specification and/or design information from source code and other
software artifacts.

Forward engineering “Within the context of reengineering, forward engineering is the
software engineering activities that consume the products of reengineering
activities primarily reverse engineering, reuse, and new requirements to produce a
target system.” After useful software artifacts are captured from the existing
system, they are integrated with newly constructed artifacts in the forward
progression through the software engineering process.

Translation (also known as Conversion) “Transformation of source code from one
language to another or from one version of a language to another version of the
same language.” Translation is the automated transformation of software artifacts
into functionally equivalent artifacts with a different base (e.g., language, database,
or user interface).

The last two techniques, reengineering for reuse and migration, make use of the other
techniques. Reengineering for reuse (also known as software salvaging and reclamation)
captures, selects, adapts, classifies, documents, and stores software artifacts from an existing
system to be reused in other software systems (Biggerstaff 1989) (Arnold 1990) (Garnett and
Mariani 1990). Migration first reverse engineers functions and data from one or more
existing systems, combines and partitions them for allocation, then forward engineers the
allocated functions into one or more respective systems (Medek and Boylan 1992).

1.4.3 Software Maintenance Terms
Traditionally, software maintenance is defined as the collection of activities that support

correcting, adapting, and perfecting existing software systems (Lientz and Swanson 1980).
Corrective maintenance is the reactive correction of software performance and implementation

y :

errors. Adaptive maintenance is software change in response to new requirements for the
purposes of enhancing the software. Perfective maintenance is proactive software
improvement through performance optimization and quality (maintainability) support for
future evolution of the system. Additionally, user support represents the work that a
maintainer does responding to user requests that do not result in product modification.

The traditional software life cycle depicts software maintenance as starting after software is
deployed. However, software maintenance begins with user requirements, and principles of
good software development apply across both the development and maintenance processes.
Another way to view the software life cycle is software development followed by multiple
instances of software evolution. One of the goals of software development is the production
of maintainable software systems. By the same token, evolution of software systems should
strive to preserve or restore this maintainability. Reengineering is a consideration as an
improvement measure prior to system redevelopment when maintainability wanes to the point
that changes are excessively difficult. The next section presents an overview of software
reengineering by presenting some perspectives on the technology and introducing relevant
software reengineering techniques.

1.5 ORGANIZATION OF THE REPORT

The organization of this report is as follows: an introduction, an overview of software
reengineering, the software reengineering risks taxonomy, an example on using the taxonomy,
and a conclusion. Section 2 presents an overview of software reengineering that addresses
key points in the technology and software reengineering techniques included in the software
reengineering risks taxonomy. Section 3 outlines the software reengineering risks taxonomy
explaining the organization and salient features. It then continues by presenting the tables for
the five key software reengineering risk areas: planning, process, personnel, product, and
technology. Section 4 uses the taxonomy in an example based on the Air Force's Weighted
Airman Promotion System (WAPS) reengineered earlier this year. The report concludes with
some comments on the taxonomy and its potential use.

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 2

OVERVIEW OF SOFTWARE REENGINEERING

There is some truth to the statement "you must first engineer a system before you can
reengineer it." Many current software systems are not well engineered which makes it
difficult to reengineer. Even if these systems are engineered well, they are likely to suffer
from continued change associated with software evolution and maintenance (Lehman 1980).
Changes in the application environment and concomitant changes to the software product
usually lead to software reengineering. Other reasons for reengineering a software system
include:

« QOutdated/obsolete information technology
- Introducing new database technology
- Need to integrate with new systems
- Introducing new user interface technology
- Introducing new communications technology

e Need to combine and migrate stovepipe information systems
- Rearchitect databases
- Migrate data to new data architecture

» Deteriorating reliability/increased software failures

e Poor response to change
- Long change cycles
- Increasing backlog of change requests

e Waning software maintainability
- Code/design instability
- Increasing maintenance costs
Increasing size and complexity
Poor quality code
Need to eliminate obsolete/redundant code

o Difficult to test
- High test case volatility
- Long test cycles for short changes

¢ Performance problems

Often software work products become out-of-date, patched, and difficult to maintain with
continued changes (Bohner 1992). Reengineering techniques offer some relief to this

9

situation by improving the maintainability of the software work products (Bush 1988). In this
regard, reengineering can proactively change software to improve maintainability.

Requirements, system descriptions, specifications, architectures, functional designs, detailed
designs, source code (in its various forms), test specifications, test procedures, test reports,
and verification plans are among the plethora of information that inundates the audit trail of
the typical software development effort (Santa Barbara I)(Arnold 1993). While much of this
information is generated during the forward progression through the software development life
cycle, it is currently impossible to reconstruct all of this information from only the source
code of a system. Obtaining software development information from the source code of the
system is often difficult. Some essential features may be derivable, but many information
gaps will remain. While some derived information will be correct, some may be misleading.

Reengineering software often involves information that can be reconstructed form the source
code. The degree to which information can be extracted depends largely on the language
used, the database interface, the user interface, interfaces to system services, interfaces to
other languages, domain maturity/stability, and the tools available. The information useful to
the software maintainer depends on the maintainer's experience level (with the above aspects
of the system), the complexity of the change, and the complexity of the system being

. changed. It is important to note that most third generation computer languages are designed
to express solutions to the computer and have little if any capability for expressing
requirements of design specifications. Current tools can only capture some evidence of
program designs, little evidence of architecture, and very little software and system
requirements. Much of the reengineering work is accomplished by the experienced software
engineer or systems analyst.

Figure 2 illustrates the general view of software reengineering with reverse engineering and
forward engineering.

Requirements

Logical Design

3
A,
5 (=
5 ®
& &
(] R) (Y
& Physical Design B
& &
Q b
X

. ’;’vIIﬁplémentation‘

Figure 2. Software Reengineering and Levels of Information

10

Notice that there are four levels of information represented in the diagram. The first,
implementation, represents source code, data definitions, database calls, and other computer
interpretable artifacts. This is the most concrete of the levels. The second, physical design,
represents program design, physical data model, and other detailed design information.
Physical design is where most capture tools have their best success. The third level, logical
design, represents high level software and data design specifications (i.e., data flow, control
flow, logical data model, entity-relationship-attribute, and the like). This conceptual and
logical information about the system is very difficult to capture from implementation or even
physical design. Requirements are the most abstract representation portrayed here.
Requirements even when formally represented are extremely difficult to derive from lower
level artifacts. These are usually captured manually from documentation and interviews with
users and systems staff.

This section examines some important reengineering techniques in more detail including:
redocumentation, restructuring, reverse engineering, forward engineering, translation (also
known as conversion), reengineering for reuse, and migration. As indicated earlier, the first
five techniques are singular while the last two are composites of one or more of the other
techniques. Each of these reengineering techniques is discussed with respect to the
perspective of reverse engineering (or capturing) information to a higher level of abstraction
(ranging from implementation to requirements) then forward engineering the system to more
concrete levels.

2.1 REDOCUMENTATION

Software Redocumentation

» Captures physical design information

» Does not change implementation or function

» Generates reports on structure and metrics

» Does not store objects in malleable representation

Figure 3. Software Redocumentation

Redocumentation is the analysis of source code to produce software system documentation
and metrics information. The analysis measures characteristics of source code to capture
variable usage, module calling, control paths, module volume, calling parameters, and/or test
paths. Analysis of this information produces stand-alone reports containing useful statistics
and diagrammatic information. However, the information produced is not necessarily
controlled through a project database/repository or based on software system modeling

11

methods. The outputs of redocumentation include a wide range of possible documents and
reports including:

* Module calling hierarchies

 Hierarchy input process output (HIPO) diagrams
» Data interface tables

» Data flow tables and diagrams

» Control flow tables and diagrams

» Pseudocode

» Test Paths

* Module and variable cross-references

Redocumentation supports software restructuring by providing graphical, textual, and tabular
information for the developer to assess whether or not a system requires restructuring. The
resulting information form redocumentation significantly aids maintenance efforts by
providing module, program, and system information. However, since there is no mapping
between specification and restructured code, the resulting documentation reflects what is,
rather than what may have been specified in the original documentation.

2.2 RESTRUCTURING

Software Restructuring

* Represents code in internal format

* Alters characteristics internally

* Produces changed implementation
without altering function

Figure 4. Software Restructuring

Early in its history, restructuring was the primary transformation technology for making
source code easier to understand and subsequently easier to maintain. As software
engineering principles have played a more important role in software development,
restructuring has evolved to become one aspect of what is now called reengineering.
"Software restructuring is the modification of software to make it easier to understand, easier
to change, and less susceptible to change" (Arnold 1986).

Restructuring tools interpret the source code of a system and represent is internally for
restructuring. Simplifications to the internal representations are performed according to
transformation rules, and the resulting representations are recast in structured code. The
outputs of these tools typically include only source code. However, some restructuring tools
have supporting tool suites to provide structure, volume, complexity, and other additional

12

metric's information. Metrics information determines the maintainability of the source code
and the necessity of restructuring. These tools are very useful and have been shown to
increase productivity of software maintenance staff substantially.

2.3 REVERSE ENGINEERING

Software Reverse Engineering

Captures physical design information

Infers abstract information (human intensive)
Generates software documentation

Stores objects in malleable representation

Does not change implementation or functionality

Figure 5. Software Reverse Engineering

Reverse engineering, like redocumentation, provides specification and design information
about the software system from its source code. However, reverse engineering goes further
than redocumentation in attempting to recover engineering information based on software
specification and design methods as well as storing it in a form that can be manipulated by a
software engineer. The extracted specification and design information is not always complete
because the mapping between the source objects and associated design objects is often many-
to-many. Therefore, in reverse engineering there is a high potential for information loss in
the resulting interpretation.

Recent advances in graphic workstation technology and storage management techniques
facilitate reverse engineering automation. The graphics capabilities of workstations allow
designs of software to be displayed and manipulated graphically while the storage
management capabilities provide a good mechanism for managing a repository of software
information gathered by the reverse engineering tool. Source code is first submitted to the
reverse engineering tool. This tool interprets the structure and naming information to
construct outputs in much the same way as described in the redocumentation tool discussion.
Standard analysis and design methods serve as good communication mechanisms to articulate
the reverse engineering information. Data dictionaries, data flow, control flow, and entity-
relationship-attribute diagrams are all examples of typical reverse engineering outputs.

13

2.4 FORWARD ENGINEERING

Software Forward Engineering

Integrates captured software artifacts with new
ones to construct system

Generates software documentation

Stores objects in malleable representation

Changes implementation and may change function

Figure 6. Software Forward Engineering

Forward engineering represents the software engineering work that accomplishes construction
of the reengineering system (the forward progression through the software engineering process
from requirements through deployment). In the reengineering context, the key element that
distinguishes forward engineering from standard development is the existence of software
artifacts captured from the original system during reverse engineering. These artifacts
represent effort savings since they do not have to be newly constructed. However, they also
increase effort necessary to integrate them with the newly developed software products.

Forward engineering may also introduce new requirements that change functionality of the
software being reengineered. Introducing new requirements during the forward engineering
phase can complicate the reengineering effort since many of the normal regression tests used
for validating the system may be affected. New requirements may substantially impact many
of the captured software artifacts and may require additional modification. Examination of
new requirements prior to reverse engineering can eliminate conflicts and required rework
during forward engineering.

2.5 TRANSLATION

Software Translation

Captures language or data representation
Translates to target form (tool intensive)
Does not change function

Changes implementation

Figure 7. Software Translation

14

Software translation (also known as software conversion) is a relatively mature technology
applied since the 1960s to one degree or another in the language and data arenas. Translation
is much like restructuring in its level of abstraction and its focus on altering the
implementation while leaving the function intact. The difference is that translation often
changes a key architectural component of the system like implementation language, database,
operating system, communication interface, or user interface. Most translation work is
accomplished using a tool while exceptions like system services are handled manually.
Typical translation issues include representation and structural incompatibilities, coverage,
labeling, and mode of control.

2.6 REENGINEERING FOR REUSE

Software Reengineering for Reuse

» Captures software artifacts

» Evaluates them for reuse

» Alters artifacts for reuse in other contexts
» Does not necessarily change function

* Changes implementation when needed
 Stores in reuse library for future use
 Publishes documentation on artifacts

Figure 8. Software Reengineering for Reuse

Software reengineering for reuse (also known as software salvaging and reclamation) is a
microcosm of software reengineering in the large. Essentially, this composite technique
consists of reverse engineering software components from an existing system and forward
engineering them to be placed in a reuse library. Rather than addressing the entire system,
the focus is on components that can be reused in multiple applications.

Reengineering for reuse is relatively immature technology that has been applied effectively
only since the late 1980s. Reuse, in its current form, is mostly "component reuse" applied to
software modules and some design components. Unfortunately, most reuse success has
centered on the population of reuse libraries with low level fragments of software programs.
Populating these libraries can be accomplished by salvaging software artifacts from existing
systems rather that developing them form scratch. Once the artifact has been captured,
normal "engineering for reuse" principles apply while forward engineering the artifact.

15

Capturing artifacts for reuse is not an easy process since there are likely to be considerable
numbers of objects that must be evaluated and selected. Once selected, they may need to be
modified and will need considerable testing (since a faulty component may inflict the same
number of systems as it is reused). Then the reusable component must be documented and
published so that users will be aware of its existence and how to use it.

The higher level the artifact, the more gain there is in its reuse but the less likely that it will
fit the purposes of a given situation. The converse is true also. Additionally, adaptation of
the artifact may represent considerable work both from the capture and use perspectives. If
there is considerable work in adaptation, this must be weighed against the artifact's potential
for reuse. ‘

2.7 MIGRATION

Software Migration

Reverse engineers functions from multiple
systems (human intensive)

Consolidates common functions

» Maps functions to available software

May change function and implementation

Forward engineers functions into one or more
new systems

Figure 9. Software Migration

Software migration is another procedure that may apply a composite reengineering technique.
If the migration activity is not a simple conversion, such as to a new operating system, it will
employ reverse engineering to capture requisite functions and associated data from one or
more systems and forward engineers them into one or more new systems. The idea of
common function and shared data is key to this technique (DoD 8020.1 1992) (Strassman
1992). Software migration's technology maturity is dependent on the reengineering
technologies it employs to accomplish the migration. Migration has (to lesser and greater
degrees) been successfully applied to information systems over the last two decades
(Davenport 1993). Sometimes the right approach was to get requirements form originating
systems and redevelop a single or multiple systems with a remapping of functionality. Other
times, common factors such as language would enable entire functions (code and
documentation) to be lifted from one or more systems and integrated into common systems.
Migration appears to be the technique of choice when moving from a centralized data

16

approach to a client/server data approach. Therefore, much more experience will be gained
with migration over the next few years.

This section presented a brief overview of some current reengineering techniques pertinent to
the DoD Automated Information System modernization. In the next section, we examine
software reengineering from the perspective of its potential risks. This software reengineering
risks taxonomy outlines five risks categories. Many of the reengineering techniques presented
here map into the technology risks category. However, many other reengineering issues are
discussed.

17

THIS PAGE INTENTIONALLY LEFT BLANK

18

SECTION 3

REENGINEERING RISKS TAXONOMY

Software reengineering is a relatively new field and does not have a great deal of experiential
data to draw upon for identifying risks. There is a limited number of published works that
directly address this area (Arnold, 1991; Arnold, 1992; Sneed, 1991). While their work was a
beginning, Arnold and Sneed suggest much more work needs to be done. The software
reengineering risk taxonomy presented in this section represents a synthesis of over four
hundred identified risks affecting reengineering projects. The reengineering risks taxonomy is
a product of considerable effort reviewing reengineering and risk literature, interviewing
information systems personnel, and brainstorming with staff experienced in software
reengineering'. The taxonomy is by no means exhaustive but does constitute a relatively
comprehensive set of software reengineering risks.

The intent of this taxonomy is to identify, classify, and organize software reengineering risks
into a form that will assist DISA and Central Design Activity (CDA) project managers and
staff involved in AIS software reengineering situations. Its purpose is to simplify the task of
identifying reengineering risks and assist in preparing for estimation and evaluation of
software reengineering risks.

In synthesizing and organizing the collected risk information, we identified five major
software reengineering risk categories: Planning, Process, Personnel, Product, and
Technology. Each one of these categories is divided into several risk areas which are in turn
divided into sub-areas. Figure 10 presents the categories in a star configuration to signify the
relationship of the categories to each other and that risk can have multiple implications. Each
risk category is listed at the right hand side of the diagram in a table that includes the top-
level risk areas for each category. '

' The software reengineering risks information was generated from investigations of software
reengineering literature much of which is in the list of references at the end of this report.
Interviews were conducted with Redesign staff at the Air Forces Military Personnel Center,
DISA/CIM staff, GTE Data Services staff in Tampa, Florida, MITRE Staff supporting Internal
Revenue Service modernization efforts, and participants of the Reverse Engineering
Workshop. The informal list of factors applied to building this taxonomy is not included as
part of the report but is available from the authors upon request.

19

Risk Category Risk Areas

Planning Reengineering Strategy
Reengineering Approach

SOﬂware Reengineering Reengineering Goals

Process Preparation Activities
Reverse Engineering
Forward Engineering

Technology Planning

Personnel Availability
Knowledge -

Experience/Training
Motivation

Process Teaming

Product

Product Application Characteristics

Technical Infrastructure
Implications

Personnel Standards

Characteristics of Data

Enterprise Model
Implications

Age

Intended Longevity

Importance to
Organization

Technology | Methods
Tools

Figure 10. Five Sides of Software Reengineering Risks

The software reengineering risks taxonomy partitions each of these five risk categories into
separate tables. Detailed separate subsections, starting with planning risks, describe the
planning, process, personnel, product, and technology risk categories. Each category
subsection contains a few paragraphs of introductory text followed by a detailed table
outlining risk areas, impact/exposure, and example factors. The table structures present the
risk category (e.g., Planning) followed by numbered risk areas (e.g., 3 Reengineering Goals),
followed by its risk sub-areas (e.g., 3.1 Maintainability), and so on.

In this report, an enterprise model is defined as a high-level model of an organization's
information resources documented by an enterprise's data subject areas (entity types or

20

classes), functions, processes, and their inter-relationships. An enterprise model provides
guidance to information systems planning and can facilitate reengineering by providing focus
and key areas to consider. Detailed activity and data models are used during business process
reengineering and are reconciled with the organization's enterprise model. If an organization
does not have an enterprise model, a risk of not selecting appropriate information systems is
present when performing reengineering. An enterprise model is a key factor when
establishing an integrated, shared data environment and should be considered when planning
for reengineering.

The Risks Taxonomy identifies risks associated with the Software Reengineering Process
defined in the CIM Software Systems Reengineering Process Model. The Model is in IDEFO
format that consists of activities and interfaces.

3.1 PLANNING RiSK CATEGORY

The planning for a software reengineering project consists of selecting a reengineering
strategy and appropriate approaches to achieve identified strategic reengineering goals. The
risks identified in the Planning risk category are associated with the "Define Project" activity
in the CIM Software Systems Reengineering Process Model. A reengineering strategy sets an
overarching direction for achieving reengineering goals based on strategic organization goals
and situational factors, such as department budget or resource availability. Alignment of an
approach with the selected strategy provides the means for achievement of reengineering
goals. The linking of reengineering goals with overall organization goals is an important
factor in reducing the risk associated with reengineering. Alignment of software
reengineering goals with organization goals helps to ensure reengineering projects support the
organization's strategic direction.

Particular strategies are available for a reengineering project manager to choose to meet an
organization's goals. Adoption of a strategy for reengineering provides broad constraints to
the tactics or processes executed during reengineering. The intent of a reengineering project's
approach is to guide the processes necessary to achieve established reengineering goals. The
selected approach should target an appropriate level of abstraction based on reengineering
goals defined by the adopted strategy. An organization's budget, time, schedule, adaptability
to change, and aversion to risk provide guidance to the selection of a reengineering strategy.

Three common reengineering strategies employed for reengineering projects are innovation,
incremental improvement, and tactical strategies. Each of these strategies contains discrete
associated risks. An organization's level of aversion to change influences reengineering
strategy selection. The strategy selected by an organization for reengineering bounds the
available approaches that are suitable for executing a reengineering project plan.

An innovative strategy for reengineering is a radical method that replaces an entire
information system during one concentrated reengineering effort. Adoption of an innovative

21

strategy is a high-risk method that can provide the most benefit if successfully executed. It is
analogous to the business process reengineering approaches that advocate complete
reinvention of an organization's business processes. An innovative strategy usually dictates a
top-down approach that changes an information systems functionality and implementation.
The methods associated with this strategy usually have a high risk due to longer schedules
and a high degree of change associated with this type of project.

An incremental improvement strategy is a reengineering strategy that replaces the entire
information system using a series of phased projects. This strategy guides the organization's
reengineering approaches towards less risk intensive projects that are of a shorter duration.
While an incremental strategy can be more effective than an innovative strategy in producing
short-term benefits it frequently encourages approaches that consume a longer time period to
institute all needed changes. The incremental approach introduces less scheduling risk than
an innovative approach but may present interface and interoperability issues between the
reengineered phase of the system and the existing system.

A tactical strategy for reengineering identifies and selects key areas of an information system
to initiate reengineering. A tactical strategy can use either an approach that targets the critical
twenty percent of an information system, based on the concept that twenty percent of a
system usually accounts for eighty percent of the processing (i.e., the 80/20 principle), or can
be specified for specific problem area improvements. A tactical strategy can be viewed as an
innovative strategy that focuses on a limited segment of a system.

Multiple approaches are available to implement selected reengineering strategies. One of the
following approaches is typically used when reengineering:

. Translation

. Partial change to implementation, no change to function

. Complete change to implementation, no change to function
. Change to implementation minimal, change to function

. Complete change to implementation and function

Example reengineering strategies, approaches, and goals are identified in Table 1 along with
more detailed impacts and exposures.

22

Table 1. Software Reengineering Planning Risks

In the absence of planning there is considerable risk of having an
unfocused or redundant effort. Impacts of planning risks can be described
in terms of effort, schedule, and costs. Poor planning is a major risk issue
for a system project an has an increased emphasis when reengineering due
to the level of change and the number of parameters associated with the
project. Selection and management of appropriate strategies, goals, and
approaches enable anticipation of potential changes in corporate culture and
facilitates maintenance of management commitment.

Risk Area

Impact/Ex posure

Example Factors

1
Reengineering
Strategy

An effective strategy can have major risks
associated with it. Selecting a strategy that is
compatible with business process
reengineering goals is critical. Innovation can
expose the reengineering effort to radical
change without commensurate commitment.
Incremental improvement can alleviate some
of this but can cause the change to be so slow
that it is too late to be of value. Tactical
strategy is highly dependent on a priori
information.

Innovation (radical)

Incremental Improvement

Tactical (concentrated area)

» 80/20 principle

* Specific improvement area
(e.g., restructure module)

2
Reengineering
Approach

Reengineering approach can expose a project
to completeness dangers. A top-down
approach may make assumptions that miss
some of the efficiencies of capturing low
level, detailed system information. Bottom-up
may overlook the major issues like
information technology that the business
process may need. Opportunistic approach is
again intelligence dependent. Change to the
implementation without change to the function
of a system is a good separation of concerns.
This simplifies the effort and reduces its
impact.

Translation

Partial change to implementation,
no change to function

Complete change to impleménta-
tion, no change to function

Change to implementation
minimal, change to function

Complete change to implementa-
tion and function

23

Risk Area

Impact/Exposure

Example Factors

3
Reengineering
Goals

Inappropriate or absent software reengineering
goals can lead to substantial exposure to a
misguided or unfocused reengineering project
resulting in costly rework and delays. If the
goals are not agreed upon and measurable,
there is exposure to an inability to monitor or
control the reengineering activity. Moreover,
there is the potential for goals to shift, causing
considerable work to satisfy a moving target.

3.1
Maintainability

Improving information system maintenance is
a key success factor for many organizations.
By not improving system maintainability the
system may be subject to increasing
maintenance costs and slower response to
change. Difficult to maintain systems have a
risk of being by-passed for other solutions as
the system becomes increasingly expensive to
maintain.

Costs

Response to Change
Ease of Change
Understandability

3.2
Modernization

Modernization of legacy information systems
is a common goal for many organizations with
large investments in information technology.
The number of factors associated with tying
system modernization with a reengineering
approach increases a project's risk.
Introducing new technology into an existing
system may mean that considerable segments
of the system have to be reengineered, often
with cost exposure.

Application
Infrastructure
Technology Infusion

33
Reliability

Reengineering current information systems to
improve reliability is a prevalent goal that is
linked to other considerations (e.g., platform
capabilities)

Reduce Failures
Reduce Errors

24

Risk Area Impact/Ex posure Example Factors
3.4 Reengineering is a mechanism for changing an | Add New Functions
Change information system's functionality to meet new
Functionality or changing system requirements. Pursuing Alter Current Functions
modification of a systems functionality by
using reengineering introduces several risks, Delete Old Functions
including inappropriate selection of a
reengineering approach when a redevelopment
would be more effective.
3.5 Reengineering an information system to use Separate Concerns
Portability open systems technology reduces the risks for | ¢« GUI, DBMS, subsystem
future maintenance and redevelopment
projects. Partitioning
Simplify Interfaces
Standardize
3.6 Reengineering an information system to Stability of standards,
Incorporation of incorporate standards may improve the * applicability
Standards portability and reusability of the system and its » extent of acceptance by
components. community at large
3.7 The goal to modernize an information system's | Data management architecture
Infrastructure infrastructure often initiates a reengineering ¢ Centralized to distributed
Modernization effort. The extent that the target infrastructure client/server

deviates from the current infrastructure
influences the amount of risk associated with
the modernization (e.g., moving from a
mainframe based architecture to a client/server
environment introduces risk). Exposure of a
project to considerable schedule, technology,
and cost impacts is probable without careful
consideration of the architectural ramifications.

+ Hierarchical to relational

User interface architecture

*+ Command line interface to
graphical

 Single mode to multimode
windows

Communications

¢ Direct connect to Local Area
Network (LAN) to Wide Area
Network (WAN)

25

Risk Area Impact/Exposure Example Factors

3.8 Populating an organization's repository is a Shared repository
Repository Load common goal of reengineering projects. The
goal of repository population usually involves | Repository security
long-term benefits that introduce risk if an
organization is concerned about short-term cost | Costs and benefits (short and

objectives. long-term)
39 Reengineering can integrate existing Configuration management
System Integration information systems with newly developed or ¢ Change control
other reengineered systems. Modernizing » Configuration control

existing stovepipe systems with reengineered
systems replacing existing data structures with | Data management technology
shared data structures represents considerable
change and exposure to risk. Moving to a
shared data environment frequently includes
changing data management technology (e.g.
inserting a RDBMS) which can increase overall
project risk.

3.2 PROCESS RISK CATEGORY

Much of the software reengineering risks associated with the other risk categories have a
reengineering process risk component. That is, there are activities that often originate risks
that manifest in the other reengineering risk categories. In the absence of appropriate
software reengineering process activities, there is considerable exposure to risks.

Reengineering process risks presented here support the Center for Information Management
Software Systems Reengineering Process Model (DISA/CIM 1993) by identifying risks
associated with critical software reengineering process activities. The primary software
reengineering process risk areas are Preparation A ctivities, Reverse Engineering, and Forward
Engineering. The risks identified in the process risks category impact the Center for
Information Management Software Systems Reengineering Process Model's Define Project,
Reverse Engineer, and Forward Engineer activities. Figure 11 depicts a simplified diagram of
these activities.

The risks in this category focus on software reengineering process or even normal software
activities. Since software reengineering processes differ mostly at the detailed level (based on
specific reengineering requirements), the process risk category presents several risk areas that
should be examined to ensure that reengineering project staff are cognizant of potential risk
exposures. Reengineering Preparation A ctivities include: Establish Goals, Analyze
Application Portfolio, Select Reengineering Strategy, Analyze Cost and Benefit of
Reengineering Effort, Establish Support for Reengineering Effort, Develop Reengineering

26

Plans, Select Reengineering Technology, Build Reengineering Team, and Manage
Reengineering Acquisition. Reverse Engineering activities concentrate on: Capture Objects,
Analyze Objects for Reuse, and Prepare Objects for Reuse. Forward Engineering activities
support: Add new Requirements, Integrating Captured Objects to Construct New System,
Reimplement System to Reengineer in the Future, Migrate Existing Data, and Conduct Post-

Reengineering Assessment.

Automated
Information
System Reengineering Project Plan
Define Project
. .
> Al Baselined
Automated
Information
System . Reverse
Reverse Engineer .
Engineered
Reverse Products
Engineered A2
Products Y Reengineered
L System
Forward Engineer
A3

Analysis Deliverables

Figure 11. Major Software Systems Reengineering Process Activities

The sub-areas of the Preparation Risks area cause vulnerability to many of the risks presented
by the Planning category. During the preparation for a software reengineering project the
strategy and goals of the project are established and viable approaches are examined.
Determination of both the risks of conducting a reengineering effort and the risks of not
conducting the effort is a consideration.

A clear case should be made that a problem exists and can be solved by a reengineering
effort before a reengineering project is initiated. From the maintenance improvement
perspective, evaluation of the applications portfolio identifies targets before reengineering.
The risk of not performing this evaluation is that there may not be the tangible connection
between maintenance problems and reengineering solutions. When the goal is to replace
several systems with one, there is the risk of not selecting the functional features most
representative of the application domain. A need exists for processes to select the migration
systems, as well as process steps to introduce the necessary unique requirements of similar
legacy systems. Failure to do so risks greater cost and longer schedules for the reengineering

27

effort as well as the necessity to continue operating the legacy systems after the beginning of
operation of the reengineered system.

The Reverse Engineering risk area is typically the riskiest of the processes based on industry
experience with requisite methods and tools. During reverse engineering, artifacts in the
current operational environment are often in a state of flux. Much time can be lost
administrating the on-going changes. Production of an obsolete product may result if the
reengineering process does not coordinate maintenance and reengineering activities. During
reverse engineering, there is a potential that many captured objects will be useless to the
reengineering effort. The process and the tools may not be discriminating enough nor fast
enough to handle the application volume.

Once captured, the application objects must be interpreted and analyzed for reuse in new
systems. The captured objects must be analyzed to understand their use, context, and
potential for reuse in other systems. The reengineering process should address partitioning,
naming and defining the objects and place them in the larger context.

Many of the same risks associated with a typical software engineering project are present in
the Forward Engineering risk area. Forward engineering should address the risks of adding
additional requirements with an additional emphasis on integration. The addition of new
requirements is a process similar to the maintenance release process and should consider
typical risks associated with software engineering. The forward engineering process devotes
considerable effort to integrating captured software objects with newly developed software,
establishing detailed processes to deal with this perspective mitigates the risk of ineffective or
poor quality system implementation.

28

Table 2. Software Reengineering Process Risks

The software reengineering process can have a significant impact on the
success of a reengineering effort. Not establishing, organizing, and
executing the process effectively can expose the reengineering effort to
considerable delays (false starts, redundant activities, etc.) and influence
greatly the quality of the resulting product.

Impact/Exposure

Example Factors

Software reengineering often requires
considerable preparation work establishing
goals, analyzing applications portfolio,
selecting reengineering strategy, determining
cost/benefit, establishing support, developing
plans, selecting technology, building the
reengineering team, and acquiring resources.
The absence of these preparation activities
may cause the other reengineering activities to
be inefficient or even fail.

1.1
Establish Goals

Activities to identify requisite goals and obtain
the commitment of management and staff are
necessary for a reengineering project to be a
success. In the absence of this activity there
is considerable exposure to risks. The project
risks becoming unfocused and inefficient
without clear goals and management
commitment to those goals. To the degree
that objectives are measurable goals, objective
metrics makes it impossible to substantiate
claims of reengineering success or to
document areas that contributed to a project
failure. See the planning risks section to get a
more detailed view of goals.

Short-term Goals

* Determine scope of project

* Get management
commitment for resources
(budget, staff, tools, etc.)

» Establish responsibility and
authority

« Pilot reengineering approach

Intermediate Goals :

« Evaluate captured artifacts
for reuse

» Plan forward engineering

Long-range goals

» Complete reengineering
effort

« Demonstrate cost/benefit

1.2
Analyze Application
Portfolio

Activities to examine existing application
software and data are necessary to get insight
into the appropriate strategy or approach for
reengineering. In the absence of this activity
there is some exposure to missing important
aspects of the product before establishing a
reengineering plan. See Product risks for a
more detailed view of application portfolio
exposure.

29

Risk Area

Impact/Ex posure

Example Factors

1.2.1
Obtain Application

Activities to inventory application software
and data descriptions are necessary to identify
products for evaluation. Without a plan to
identify and obtain the applications under
investigation there is an exposure to not
understanding the reengineering problem.
Access to applications and tools to evaluate
them is essential for successful analysis of the
application portfolio.

Development artifacts

 requirements, design, source
code, test material, CM
material, and installation
material

Operations artifacts
* manuals and logs

User documentation artifacts
» reference manual, tutorials, and
primers

Data artifacts
* schema descriptions, data item
descriptions, and bridges

122
Evaluate Application

Activities to evaluate the applications software
are important from both technical and
functional standpoints. Verification of project
goals as obtainable, planning of strategies, and
calculation of costs and benefits are not
possible without an evaluation of the quality
and appropriateness of the product to be
reengineered. See product risks section for
more detail on these exposures.

Product usefulness
o utility and duration of utility

Maintainability

* stability, reliability,
understandability, size,
complexity, traceability, and
self descriptiveness

Importance

* to business process,
organization,
industry, and individuals -

Expected longevity

1.3
Select Reengineering
Strategy

Activities to determine an appropriate
reengineering strategy involves people from
the business and technological arenas.
Absence of this activity will impact the
reengineering by missing important business
and technical implications known by these
groups. Not examining alternative approaches
introduces a risk of the reengineering effort
failing by not producing an improvement over
the current situation or the effort may produce
sub-optimal results. Details of the impacts for
strategies are in the planning risks section.

Pilot Reengineering Approach
Select Approach

Plan for Large-Scale
Implementation

Risk Area

Impact/Exposure

Example Factors

1.4
Analyze Cost
and Benefit of

Activities to determine the cost and benefit of
the reengineering activities are necessary to
justify the project's start and to confirm its

Potential costs drivers
 environmental, complexity,
personnel, and applications

Reengineering eventual effectiveness. Assessment of familiarity
Effort management support, development of informed

business decisions, and eventual project Potential benefit drivers

success is not likely without such an » wider reusability, reduced

evaluation. maintenance effort, consistent
application use of process and
data, and reliability

1.5 Activities to enlist the support of the Cost/Benefit Reviews

Establish Support for
Reengineering Effort

management, business users, and technical
staff are necessary. Without the support of
persons in each of these areas, the project may
fail because of the lack of resources, domain
expertise, or technical staff commitment.

Goal Reviews
Technical Reviews
Demonstrations and Pilot Projects

History of similar projects

1.6
Develop
Reengineering Plans

Activities to produce reengineering project
plans are necessary to record important
strategy, objective, schedule, resource,
assumption, and approach information. The
impact of not producing and getting a plan
approved will be low management
commitment and potentially disastrous
implementation. Activities for evaluation at
various points in the reengineering process are
necessary to determine effectiveness of
strategy and methods. In their absence, there
is little control to prevent the economics of
the effort from getting out of hand.
Corrections to ensure goal attainment is not
possible without these activities. Also see the
planning risks section.

Strategy, objective, schedule,
resource, assumption, and
approach.

Metrics

Changes in strategy, tactics and
methods

Key Decision Points
Product Evaluation

Quality Program Principles

31

Risk Area Impact/Exposure Example Factors
1.7 Activities to identify appropriate reengineering | Process information to be
Select procedures, methods, and techniques are captured (activity, data, state,
Reengineering essential. Without effective, consistent, and event, etc.)
Technology understandable methods, the reengineering
techniques will not be as effective and delays Metadata (entities, attributes,
may occur. If reengineering tools are not domains, cardinality, business
available to manage complexity, to derive rules, etc.)
semantics from reengineered objects, and to
generate physical objects, then project methods | Configuration Management
become cumbersome, tedious, and error-prone.
Tool criteria based on methods
Customer Referrals
Tool Integration
Tool Support
Tool familiarity
Cost per seat
1.8 As with most software endeavors, Identify reengineering staff
Build reengineering requires the right staff in the * Domain experts

Reengineering Team

right mix. Impacts of not doing this can be
significant in terms of time, costs, and quality
of output. Absence of application domain,
system, development/maintenance, or
reengineering skills in a project can impact
adversely a reengineering effort. Team players
are essential in a reengineering project since it
is the combination of these skills that make it
successful. In the absence of having the right
skills, an activity must be in place to acquire
skilled staff for the effort. In the absence of
having the right amount of skills, an activity
must be in place to improve these skills.
More detailed information on this exposure
can be seen in the personnel risks section.

» Systems experts
« Reengineering experts

Acquire reengineering staff

* Get staff from within
organization

* Hire from outside

* Train existing staff

Establish training

» Application domain

» Program/system (development
and maintenance)

* Reengineering (method and
tools)

32

Risk Area

Impact/Exposure

Example Factors

1.9
Manage
Reengineering
Acquisition

The absence of activities to select reliable,
competent contractors puts the project at risk.
The absence of a process to monitor actual
contract performance against plan increases the
risk of missing early warnings or making
timely corrections taken when necessary. The
wrong reengineering contract vehicle can
increase the risk of a contractor's poor
performance. Execution of a cost plus fixed
fee contract is appropriate for some less
standardized forms of reengineering. Where
there is more experience and standards, fixed
fee contracts are more appropriate. Without
specific reengineering provisions for contractor
selection, contractor monitoring, engineering
environment, configuration management,
quality standards, and the like, project cost,
schedule, and quality are at risk.

Select sources issues

¢ IV&V contractors

* Independent testing

¢ Customer references
+ Competitive selection

Establish contracts vehicle issues

» Reverse engineering - Cost
plus

* Reuse analysis - Cost Plus»

* Reuse engineering - Cost Plus

» Forward engineering - Fixed
Fee

Monitor reengineering contracts
issues

» Reengineering cost, schedule,
technical performance

2
Reverse
Engineering

Reverse engineering is probably the
reengineering technical activity that exhibits
the most risk. Much of this risk is due to
third generation computer languages not being
designed to express abstract information
necessary for requirements and design
specification. Even the part of the program
that can express useful semantics, "naming”, is
often substandard in legacy systems.
Therefore with or without tools, it's difficult to
capture much information beyond program
design. Even with design, there is usually
considerable risk unless there is a large human
component with the appropriate skills (see
personnel risk section). For more detail on
reverse engineering exposures, see the
technology risks section.

2.1
Capture Objects

Capture activities should focus on identifying
reusable objects. If much time is spent on
manual capture of low level artifacts, there is
an exposure to high cost and low benefit.
More detail on this exposure can be seen in
the technology risks section.

Manual versus automated
activities

Instituting change control and
storage of captured objects

Capture of objects is typically at
the physical design level

33

Risk Area Impact/Exposure Example Factors
22 Absence of activities to analyze the captured Reuse issues
Analyze Objects for objects for reuse exposes the effort to * Generalization (wide set of
Reuse significant work to adapt them in the uses
reengineered system. That is, major portions
of the application may require substantial work | Abstraction(requirements versus
to reuse therefore making it more cost code)
effective to not use them but instead to » Adaptability (ease to change)
redevelop them. Not determining useful * Parameterized (configure items)
objects can lead to many redundant objects not | ¢ Functionality
being reused. Not validating objects with
domain and systems experts can lead to
redundant and ineffective components being
used.
2.3 Failure to prepare captured objects for reuse Organizing validated objects for
Prepare Objects for exposes the reengineering effort to the reuse
Reuse inefficiencies of custom modification for each
reuse. Failure to document for reuse can lead | Adapting objects for reuse
to no reuse. Providing a source of standard
reusable software objects enables development | Custom modification
of integrated applications, without capturing
such objects the risk of non-integrated
applications and cost escalation increases.
3 Beyond the normal software engineering risks,
Forward forward engineering increases risk only to the
Engineering degree that preparation and reverse

engineering activities expose it to risk.
However, there are risk interactions with
forward engineering that should be considered.
First is the exposure to more risk in a
reengineering effort when there are additional
or new requirements during the reengineering
effort. The second is that reuse of captured
components has a certain overhead association
with it which exposes the effort to integration
risks.

34

Risk Area

Impact/Exposure

Example Factors

3.1
Add New
Requirements

Activities that integrate new requirements with
those reverse engineered from the legacy
system add risk commensurate with the
difficulty of the new requirements. By not
preparing for these requirements to be added
to the existing structure, there is considerable
risk in not recognizing their interactions and
the requisite work involved. These risks
resemble risks encountered when
enhancements are made to a legacy system
(Sherer 1990). Requirements risks are detailed
in the product risks section.

Difficulty of a reengineering'
project increases when new
requirements are added to
existing captured requirements

Interactions with existing require-
ments

Working within the constraints of
existing requirements and
design

Changing business environment
during reengineering effort

32
Integrating Captured
Objects to Construct

A shift from the standard systems engineering
activities (moving from requirements to
design) to integration of captured software

Captured components integrated
into new system functions and
filling in the holes

New System artifacts with newly constructed components is
the emphasis of much of the work in the Enterprise model issues
reengineering context. This means integration
issues such as system interfaces, component Interaction of new and existing
interconnection, testing strategies, and business initiatives
infrastructure become more pronounced
exposures. There are also some risks in Test suites may need
integrating the reengineered application into considerable rework
the surrounding business, functional,
application, or technological environment. Reoptimization

33 Without encouraging reengineering principles Ineffective reimplementation ¢

Reimplement System
to Reengineer in the
Future

in the current implementation effort, exposure
to many of the same problems that plague
current reengineering efforts will be present in
the future. In the absence of naming
conventions, programming style guides, formal
specifications, and the like, the reverse
engineering efforts of the future will suffer.
Ineffective reimplementation can cause
unfavorable comparisons with the current
application's performance and convenience,
causing loss of benefits by stalling customer
acceptance.

absence of:
¢ Naming conventions
* Programming style guides
» Formal specifications
+ Documentation standards

Not encouraging reengineering
principles in the current
implementation

35

Risk Area

Impact/Ex posure

Example Factors

34
Migrate Existing
Data

While gateways to existing data can ease data
migration concerns, once the system has been
reengineered, migration of data from the
existing system to the new system should
eventually occur to reduce the risk of a loss of
the former system's utility. Expenditure of
much manual effort keying or scanning,
messaging, and storing existing data in the
new system may result without providing data
bridges for migration. The risk of not
migrating the data is a delay in the use of the
new system which may jeopardize user
acceptance and result in project failure. If the
old data is corrupt or obsolete there may be a
cost exposure for its reclamation. (Normally
this would be considered after forward
engineering but for the purposes of risks, it is
considered here.)

Manual versus automated
migration strategy issues

Cost/benefit of migration

May not be cost-effective to
reclaim data

3.5
Conduct Post-
Reengineering

Assessment

After completion of the preparation process,
the reverse engineering and forward
engineering processes should be executed and
periodically reevaluated. A project review is
conducted at the end of the project based on
pre-established measure to determine success
and document lessons learned. In the absence
of conducting this activity, lessons learned in
the project may be lost therefore exposing
future reengineering efforts in the organization
to repeat some of the same problems. By not
examining reengineering effectiveness
(meeting goals), there is little chance of
justifying future reengineering efforts.

Reengineering lessons learned
Future reengineering justification

Capture reengineering
cost/benefit experiences

3.3 PERSONNEL RISK CATEGORY

Like most software engineering endeavors, personnel issues are critical in software
reengineering efforts. Reengineering staff Availability, Knowledge (both experience and
training), Motivation, and Teaming all play key roles in the success of a software

reengineering project.

An effective software reengineering team consists of application domain expertise, program
and system expertise, and finally reengineering expertise. Application domain expertise -
ensures that the reengineered software will perform according to the requirements of the

36

application domain. Program and system expertise expedites the software reverse engineering
process by bringing knowledge about the location of important functions in the software.
Understanding the software is essential when capturing software artifacts both from the
completeness and consistency perspectives. Software reengineering expertise provides the
necessary reengineering planning knowledge to successfully carry out the effort as well as the
methods and tools knowledge to reverse engineer and forward engineer the software system.

Motivations for a software reengineering effort can influence greatly its potential for success.
If the outcome of the reengineering effort involves increased efficiency of the systems
reengineered, there is likely to be a perception that people employed to operate and maintain
these systems may be laid off. The reengineering team may even feel that they are working
themselves and others out of a job. Management of expectations of the reengineering
project's consequences is essential. Additionally, software reengineering is often challenging
work. Software reengineering projects are particularly subject to the effects of inadequate
incentives or perceptions of ill-fate.

Building an effective team is essential for the success of a reengineering effort. As important
as the right skill on a reengineering project is the right mix of these skills. Constructing a
reengineering team with a large number of program and system staff from the old system
increases the potential of the resulting product looking a great deal like the original product.
However, if there is a large influence from the reengineering group and domain experts, there
is a potential that the system may look radically different, even taking on substantial new
functionality.

The balance of the reengineering team is important. The leadership should be from the
program and system staff but should rely heavily on reengineering expertise to assist in
system architecture decisions. The application domain experts should have a lesser role, more
like an advisor to the functionality and testing. Not having the right staff availability or
balance will present the same kinds of risk. For example, if program and system staff are not
available during reverse engineering, there is considerable risk that there will be delays and
that the artifacts captured will be less useful. :

Although the software reengineering Personnel Risks category does not have a large number
of risk areas, it is very important to the success of a software reengineering effort. We have
split Personnel Risks out into a separate category because of the vital role it plays in a
reengineering effort. By not paying requisite attention to personnel issues, reengineering
efforts are subject to the hazards of poor reengineering planning, execution, costly rework,
delays, and possibly failure. The risks identified in the personnel risks category impact the
"Project Team" and the "Allocate Resources" activities as defined in the CIM Software
Systems Reengineering Process Model. The following table outlines software reengineering
personnel risks.

37

Table 3. Software Reengineering Personnel Risks

Personnel Like software engineering risks, software reengineering risks have an important
component that involves personnel capability, availability, motivation, and teaming.
The impact of not having available, knowledgeable, and motivated staff is a
reengineering project that suffers low productivity, poor quality products, and
potentially dissatisfaction with the resulting system.

Risk Area Impact/Exposure Example Factors
1 Given that reengineering is a relatively Staff availability at the right time

Availability new discipline and that there are frequent
advances occurring in this technology, Spreading reengineering
personnel apprised of the most effective resources across too many
reengineering techniques for the project projects
are highly valued. This means that they
are in demand and are often shared Availability for requisite training
across multiple reengineering projects. '
The exposure here is that a planned Availability for planning

reengineering resource may not be
available enough to be effective therefore
potentially delaying progress and/or
producing substandard products from the
reengineering effort. This situation is
also true with domain experts and key
systems staff. Lack of commitment by
management to allocate requisite
reengineering resources can also subvert
the effectiveness of a software
reengineering project.

2 The absence of knowledge of the
Knowledge - application domain, the current system
Experience/Training implementation, and/or reengineering
project to considerable risk. Lack of key
knowledge can lead to delays and poor
quality products. Experience and training
represent knowledge in this case.

38

Risk Area

Impact/Exposure

Example Factors

21
Application Domain
Expertise

The absence of application domain
expertise in a reengineering project can
lead to considerable exposure to errors in
understanding the artifacts captured from
the existing system. Without this
knowledge, there may be considerable
risk that newly reengineered software
may not perform the functions necessary
to support the business process. The
potential impact here is not
understanding the information technology
requirements necessary to carry out the
business process. Validating the
reengineered system depends heavily on
application domain expertise. Without it,
the result may be considerable rework
attempting to meet elusive system
requirements. In effect, absence of
application domain expertise leaves the
reengineering project exposed to
producing the wrong software for the job
at hand.

Knowing functions supported in the
business

Business rule knowledge to support
data model

Knowledge of future uses of and
advances in the business systems

22
Program/System
Knowledge

The absence of program and system
knowledge while reengineering a
software system can lead to lengthy
excursions through the current system
artifacts looking for essential information
to incorporate in the reengineered
system. Lack of this knowledge can
expose the reengineering effort to errors
in design and specification. Not
knowing the maintenance characteristics,
architecture, infrastructure, and location
of software artifacts, can lead to costly
delays and potential errors reengineering
the existing system.

Architecture knowledge of current
and future systems

Program structure understanding
influences software artifact
capture

Configuration knowledge to find
important parts of system during
reengineering

39

Risk Area Impact/Exposure Example Factors
23 Planning and executing software Software reengineering methods
Reengineering reengineering projects requires and tools experience
Expertise considerable reengineering expertise.
Without reengineering expertise, there is | Software reengineering costing
considerable exposure to poor
reengineering effort estimates, misuse of | Reverse engineering and forward
the reengineering methods and tools, and engineering implications
poor execution of the reengineering
effort. Ultimately, lack of this expertise
on a reengineering project can result in
costly delays and mistakes.
3 One of the deadliest risks of a software If the software reengineering
Motivation reengineering effort is not recognizing outcome does not benefit

the impact of the software reengineering
project on the organization as a whole.
Perhaps the reengineered system will
work more effectively, but there may be
significant impacts on people in the
process. Alignment of the motivations of
the reengineering team and the
organization precludes the reengineering
effort from being subverted by outside
interests. A particular situation worth
mentioning is where the reengineering
team is working itself out of a job
because many of its members are part of
the maintenance staff. In this case, there
should be incentives in place so that
success of the reengineering project will
reward all concerned. Otherwise, the
project is exposed to tactics designed to
cause failure.

personnel involved, may not be
supported fully by team

Personnel incentives must be in
place for the reengineering effort
to succeed

Position of staff after the project
can influence the reengineering
effort

40

Risk Area Impact/Ex posure Example Factors

4 In most cases, a reengineering team must | Right skills mix

Teaming immerse itself in a project because there
are so many relevant issues needing Balance of domain, system, and
attention at once. Not only are there reengineering skills
product issues, business process issues, * Bias towards old architecture
technology issues and the like, these with mostly existing mainten-
issues often have a high degree of ance staff
interplay in the resulting system. If the * Bias towards completely new
right skills mix is not available for the system with mostly
particular phases of the reengineering reengineering staff
project, there can be significant impact « Bias towards new functionality
on schedules and quality of results. with mostly domain experts

Building an appropriate team can
influence greatly the success or failure of
a software reengineering effort.

3.4 PRODUCT RISK CATEGORY

Products used and produced by a reengineering project are determined by the reengineering
strategy and approach selected. The characteristics of the information system being
reengineered influences greatly the tools and techniques that are applied an types of products
that are able to be produced. A reengineering project performing reverse engineering,
inserting new requirements, and forward engineering a new information system, will use and
produce a comprehensive class of products. In contrast, a redocumentation effort or a project
limited to reverse engineering will use and produce a relatively restricted product set.

The components and characteristics of an information system influence the risk associated
with reengineering. Reengineering products vary depending on the type of application
software, data environment, or platform. Each reengineering project may require different
reengineering tools and techniques and will have different associated risks. The risks
identified in the product risk category impact the majority of the interfaces in the CIM
Software Systems Reengineering Process Model.

An organization's technical infrastructure affects the products of reengineering by limiting the
tools and techniques that can be applied. Hardware and system platform considerations are
important reengineering issues and can have an extensive impact on the risk of a
reengineering project. The configuration management capabilities of the technical
infrastructure determine the risk associated with reengineering projects.

The use of standards, linkages to the business process model, the organization's data
environment, and relative importance of an information system are issues that influence the

41

‘products and risks associated with reengineering. Software engineering and information
management standards and methodologies can reduce the preparation time and improve the
quality of a reengineering project. The use of a business process model provides guidance to
information systems planning and can facilitate concentration of a reengineering project on

key products.

Table 4. Software Reengineering Product Risks

Product

Characteristics of the product influence greatly the potential exposure to
reengineering risks. The difference between the existing and target product
characteristics is a primary driver in reengineering effort and costs. In the case
where there are only a few relatively minor changes in the product there is likely to
be less risk than where there are many substantial changes in the product. There
are other implications that involve the product such as its importance to the
organization and its support to the enterprise as a whole that induces risks by not

influences the reengineering products that are
produced. The availability and quality of the
software products impacts the risk of
reengineering software.

reengineering.
Risk Area Impact/Exposure Example Factors
1 The components and characteristics of an
Application application influence the risk associated with
Characteristics reengineering the application. Changing an
application’s software, data, or platform when
reengineering may require the use of different
reengineering tools and techniques and will
impact associated risks.
1.1 The techniques and tools used during different
Software system development life-cycle phases

42

Source Code

associated with software source code is
directly related to the type of language that is
used. The type of language used to implement
an application's software is a determinant of
the level of effort that will be required when
reengineering the software. Use of business-
oriented languages tend to have a lower level
of reengineering risk because of the relative
availability and maturity of tools.

The value of reengineering and the difficulty
presented when reengineering is dependent on
the maintainability of an application’s source
code. Code that is not maintainable is often a
prime candidate for reengineering but
reengineering such code presents inherent risk
when performing reverse engineering .

Risk Area Impact/Exposure Example Factors
1.1.1 The format and quality of an application's Informal Text
Requirements software requirements documentation is a Defined/Specified
factor in determining the risk for a Derived Requirements
reengineering project. Requirements that are Quality
documented as informal text present a greater | * Stability/Volatility
risk to a reengineering project than » Completeness
requirements that are formally specified. If « Consistency
requirements are undocumented and must be « Testability
derived from existing code the risk of losing « Traceability
or misinterpreting the current requirements is
magnified.
1.1.2 The accuracy and availability of software Architecture/High-level
Design design material influence the risk of + Batch versus Interactive
reengineering. If the software's design is operations
understood it will reduce the risk of + Integrated data architecture
misinterpreting the existing design when » Application/systems
reengineering. architecture
+ Databases interactions
+ Distribution of applications
Program/Detail
e Program structure
+ Documentation
1.1.3 The complexity and reengineering risk Languages

Business * COBOL, 4GLs,
RPG, PL/1
Scientific/Engineering -
FORTRAN, C/C++,
assembler, CMS-2
Software Engineering -
Ada, C++, Modula, Pascal
Database languages

Maintainability

Stability
Complexity
Size

Portability

Completeness

Consistency

Use of embedded interface

languages

User Interface

(X Windows)

Database Management
Systems (SQL)

Reports Generators (4GL)

Risk Area

Impact/Ex posure

Example Factors

1.1.4
Test Material
(test case/data)

The availability of accurate test material is a
determinant of risk associated with
reengineering that is dependent on the
approach that is used. Test materials may
have to be reengineered with the code to
ensure that the reengineered code meets the
original requirements and specification.

¢ Unit level
e String
* System
+ Integration
 Functional

1.1.5 User, operational, training, and maintenance User manuals
Documentation documentation is often required by a
reengineering project. Frequently semantic Installation
information about software is contained in this
documentation and is difficult to obtain Operations manuals
elsewhere. The risk and difficulty of software
reengineering is increased when documentation | Training
is unavailable, incomplete, or inaccurate.
Maintenance Manuals
Development Documenta-
tion
* Requirements
* Design
* Program
» Testing
1.2 Population of a reuse library during a Reusable Objects

Reuse Libraries

reengineering project can provide reusable
objects to assist with the forward engineering
effort. Objects should be analyzed and
restructured to improve shareability before
being offered for reuse through a library. If
analysis and necessary restructuring is not
performed on code captured during a
reengineering project there is a risk that the
code will not be able to be used by other
projects and the effort expended to capture it
will have been wasted.

Applicability of objects to
other information systems

Repository Support

44

Risk Area Impact/Exposure Example Factors
1.3 Reengineering application software using Domain Products
COTS Products COTS products present a unique set of issues * Financial Systems
(Commercial - and risks. The internal structures and Billing Systems

Off-The-Shelf)

documentation of COTS products are usually
propriety and difficult to change. COTS
products may change radically when a new
version is released. The impact of a change of
this type could impact cost and schedule. If
the acquisition of COTS to replace application
software functionality is employed, some
development process risks are avoided, but
other risks may be incurred. COTS acquisition
sometimes tends to fit the organization to the
COTS product, instead of the other way
around. This may risk not getting important
requirements implemented while having a
considerable integration effort incorporating
implemented requirements. Additionally, with
COTS packages, technical and legal aspects of
maintenance may be risky, or not even under
the project's control. That is, every time a
new release of the COTS product comes out,
its added utility must be weighed against the
effort necessary to install and integrate it into
the other existing custom and COTS
applications.

* Human Resource Systems:

2 The technical infrastructure of an organization
Technical must be considered when evaluating the risk of
Infrastructure reengineering. The types of technology
Implications employed, the use of standards, the age of
system components, and availability of tools
are reengineering risk determinants.
2.1 Current host and target platforms are important | Mainframe to client/server
Host/Target Platforms | issues when considering reengineering

approaches and have an extensive impact on
the risk of a reengineering project. If an
information system is being reengineered to
migrate to a different platform the risk of
reengineering is increased.

File management to DBMS
3GL to 4GL

Migration to Object Oriented
Operating System differences

Connectivity between
platforms

45

Risk Area Impact/Exposure Example Factors
22 The availability of reengineering tools and Reverse engineering tool
Reengineering techniques is dependent on the platform on support
Platform which the reengineering is being performed, as | Forward engineering tool
well as, the host and target platforms. The support
availability and use of tools are important Application generators
factors when considering the extent and risk of | Repository support
reengineering. I-CASE tools support
Tool interoperability
2.3 The similarity of an organization's Applications Programming
Development development environment to the host and Interface
Environment target platforms can have an impact when
reengineering an information system. If the Programming environment
development environment is different from the
host or target platform, system interoperability,
integration, and testing risks may be increased.
24 Configuration management and control Change Tracking/Control
Configuration products are valuable when pursuing
Management reengineering. Configuration management Configuration Control
tools help to ensure that the intended versions ¢ CM Libraries
of software are being used by the * Build Scripts
reengineering effort and reduce the risk of
reengineering.
2.5 The availability and use of system services File Management
Use of System effects the risk of reengineering. The Data Management
Services integration of an application's software with User Interface
system service components must be considered | * Textual/command line
when changing platforms. * Graphic
3 Software engineering and information Internal to organization
Standards management standards and methodologies can | * Programming

reduce the preparation time and improve the
quality of a reengineering project. The
employment of naming, programming, and
documentation standards influence the risk
associated with reverse engineering a system.
The adoption of methodologies and standards
accommodates the implementation of
reengineering techniques. Software
engineering standards improve the quality of a
reengineering project by providing mechanisms
for developing consistent, structured,
documented code.

¢ Development

e Configuration Manage-
ment

¢ Documentation

¢ Naming

* COTS

External to organization

» Repository

» Software Engineering
Environment

» Tool Standards

46

Risk Area

Impact/Exposure

Example Factors

4
Characteristics of Data

Data reengineering or restructuring is a major
component of information system
reengineering. The approach and techniques
used when reengineering data are dependent
on the level of abstraction (physical, logical, or
conceptual) required to meet the selected
reengineering objectives. As an information
system is abstracted to higher levels, such as
logical and conceptual, risk increases due to
the amount of manual intervention normally
required.

4.1
Conceptual Model

A conceptual model is an information model
that covers a wide business area and normally
depicts major entities (or subject areas) and
relationships. Reverse engineering data to a
conceptual model has a high level of risk due
to the distant relationship of conceptual entities
to actual implemented data structures. A
conceptual model reduces the risk of redundant
data structures or processes by modeling a
functional area's information requirements
independent of technology considerations.

Reverse engineering of an
information system's data
structures to a conceptual
model

Integrate an information
system with a wider scope
of systems

4.2
Logical Model

Reverse engineering an information system'’s
data structures to a logical data model is a
reengineering activity that documents the data
requirements of the current information
system. Reverse engineering a logical data
model entails a high-level of risk due to the
lack of semantic information contained in data
structures or code. The capability of tools to
assist with the forward engineering of a logical
model to a physical model can influence the
risk if reengineering a system. The lack of a
logical model for a system being forward
engineered introduces a risk of the system
being designed without a clear understanding
of requirements.

Comprehensiveness of data
requirements

Number of data entities
Number of attributes
Number of relationships

Use of "logical or business”
names

Use of standard data element
names

47

Risk Area

Impact/Ex posure

Example Factors

43
Physical Model

Reverse engineering a physical data model or
database design for an information system is
dependent on the implementation language. If
a database management system is used,
especially if supported by a data dictionary,
the process is usually well supported by
automated tools and risk exempt. Languages
whose data definitions are not well
documented or are not supported by automated
reverse engineering tools are of a higher risk.
The use of tools that generate database
definition language statements reduces the risk
of a design not being implemented as intended
during the forward engineering process.

Completeness

Number of tables/rows/
columns

Number of primary and
foreign keys

Database design

» Structure

= Amount of tuning/optimi-
zations

44
Access Methods

An information system's data access method
can influence the reengineering process by
adding complexity to the process of separating
data from software processes. If a language's
data access is tightly coupled to the platform
or infrastructure a risk of substantial changes
is incurred when changing the platform or
infrastructure.

SQL
Query By Example

GUI products

4.5
Volume of data
(for migration)

A system with a large amount of legacy data
increases the risk of reengineering by
preventing alternative data migration options
(e.g., reentry of data) from being cost
effective.

Number of records
Number of database tables

Number of recorded
relationships

48

Risk Area Impact/Exposure Example Factors
5 An enterprise model is a high-level model of Data Architecture
Enterprise Model an organization's information resources
Implications documented by an enterprise's data subject Process Architecture

areas (entity types or classes), functions,
processes, and their interrelationships. An Applicability to business
enterprise model provides guidance to process
information systems planning and can facilitate | * Dependency on changing
reengineering by providing focus and key areas process activities
to consider. Detailed activity and data models | * Dependency on changing
are used during business process reengineering technology
and are reconciled with the organization's
enterprise model. If an organization does not Application documents
have an enterprise model, a risk of not
selecting appropriate information systems is
present when performing reengineering. An
enterprise model is a key factor when
establishing an integrated, shared data
environment and should be considered when
planning for reengineering.

6 The age of a system to be reengineered is a Legacy systems

Age critical determinant of potential risk exposure.

Older systems typically are not well Migration systems
documented, use obsolete technology, and are
difficult to maintain due to multiple patches to
the software.

7 The expected longevity of a reengineered Strategic importance

Intended Longevity

software system is an indication of the
system's importance to the organization's
operations. If a system is intended to be used
for an extended period of time, it is a viable
candidate for reengineering. Reengineering a
system that is not expected to be of use in the
future would introduce the risk of wasting
valuable organization resources on unnecessary
functionality.

Core business operation
systems

49

Risk Area Impact/Exposure Example Factors

8 The relative importance of an information Strategic importance
Importance to system to an organization's strategic direction
Organization and or operational effectiveness is a factor when Mission Critical relevance
Operations considering reengineering. If a system is of

strategic importance or critical to an
organization's operations, a conservative
reengineering approach may be adopted to
reduce overall risk to the organization. If a
system has aged to a point of where it is of
limited utility or if a systems intended
longevity is not expected to be substantial,
reengineering may not be a viable option.

3.5 TECHNOLOGY RISK CATEGORY

Software reengineering technology risks are among the most misunderstood of the risks
detailed in this taxonomy. Since there is relatively little published experience in software
reengineering most of the evidence for this section had to be obtained from experienced
reengineering staff interviews. Much of the experience for software reengineering has been in
the commercial sector where reengineering experience is considered propriety and treated as a
commercial asset. In the case that the experience is successful, the company views the
information as a competitive advantage. In the case that it is not so successful, the company
views it as "airing dirty laundry." In both cases, the information is seldom disseminated.

In examining software reengineering technology risks, it was observed that there are a host of
different techniques applied to existing systems, each having a level of risk associated with it.
Although, the risks could not be quantified numerically, they can be discussed in relative
terms. Figure 12 illustrates the idea of relative risk among reengineering techniques as well
as their relative time of effort.

Redocumentation represents the least risk among the reengineering techniques. This is
because redocumentation does not change the implementation or function and does not
produce artifacts that are manipulated beyond placement in a report. Restructuring is the next
one up on the relative risk scale. Restructuring does change the implementation but not any
function. It is typically applied to simple transformations under control of the tool. Also,
restructuring is the most mature of the techniques represented. Translation is much like
restructuring in that it changes the implementation and typically not the function of a software
system. Like the other reengineering techniques, the level of risk can vary widely with the
situation. If a translation is from COBOL-74 to the updated COBOL-85 language, then the
risk is relatively low. However, if the translation is from COBOL-85 to the Ada language,
there is considerable exposure to risk.

50

Relative Risk
A

\J

Migration
Reengineering for Reuse
Reverse Engineering
Translation
Restructuring ———»
Redocumentation ————

\j

\j

\j

Y

Relative Time of Effort

Figure 12. Relative Risk and Time for Reengineering Technology

Reverse engineering is next up on the scale. Although, reverse engineering does not change
implementation or function, it does attempt to capture software artifacts and store them in a
human malleable form. Since little more than program design information can be detected
from source code, there is considerable risk attempting more.

Reengineering for reuse represents reverse engineering for the purposes of reuse. It does not
necessarily capture higher levels of information (although it can), but it attempts to gather
components to be reused later on other systems. Reengineering for reuse brings capture risks
as well as selection, adaptation, classification, documentation, and storage risks. There are
also external risks in using the reusable components once put in a library.

Reengineering consists of both reverse engineering and forward engineering. Unlike reuse
engineering where the concentration is mostly on specific components, forward engineering
often focuses on the entire system. Migration takes this a step further by reverse engineering
functions from multiple systems and forward engineering them into one or more systems.

The risks identified in the technology risk category impact the "Identify Methodologies and

Tools" activity, and also "Available Reengineering Technology", "Methodologies", and
"Tools" as defined in the CIM Software Systems Reengineering Process Model.

In Table 5 below we examine software reengineering technology risks from the methods and
tools perspective. First we examine methods described above with respect to their exposures
and example factors. Then we detail tools risks in terms of capability, availability, and
maturity.

51

Table 5. Software Reengineering Technology Risks

Technology

Technology can be effective in expediting a reengineering project and when relied
upon inappropriately, a considerable risk exposure. In today's climate of making
tools the answer to all situations, expectations surrounding reengineering tools need
to be managed. If expectations are not managed, the impact on time, effort and

costs can be devastating.

Risk Area Impact/Exposure Example Factors
1 Applying an inappropriate method to a
Methods reengineering situation can result in
considerable waste. Risks vary largely between
methods applied. Knowing when and how to
apply a reengineering method is essential and
when not aligned with the reengineering goals
of an organization can expose a project to
considerable risk.
1.1 Risks associated with the appropriate Redocumentation tools generate
Redocumentation application of redocumentation technology are diagrams and metrics that
relatively low. Exposure comes when the may not be in the same
documentation produced does not support the representation as current
current development or maintenance process. If documentation.
the redocumentation produces inaccurate data, Volumes of expensive
this can lead to more exposure and concomitant documentation may be
risk since it can lead to mistakes in design and produced but not used.
implementation decisions.
1.2 Restructuring has the potential of obscuring the | Language issues
Restructuring understandability of the transformed source » Language covered

code rather than making it more maintainable
like it is designed to do. The impact here is
that the software may be harder to maintain
once it has been restructured. This implication
warrants a thorough examination of the
software before restructuring. The labor
intensive nature of manual restructuring can
represent considerable risk when automation is
limited. Where translation software is
available, this risk can be reduced a great deal.
However, exposures still exist since
restructuring tools seldom have the full range of
language features covered for a given situation.

» Multiple languages

¢+ Calls to system services

Data structure issues

» Physical design partially
covered

» Logical design not covered

Complexity

* Less complex but more
difficult to change

Performance characteristics

* Increased size of code and
image

* May negate optimizations

In code documentation may be
rearranged

52

Risk Area Impact/Exposure Example Factors
1.3 Reverse engineering technology is relatively Limited capture of business
Reverse immature but is increasing in capability as more knowledge from source code
Engineering attention is paid to its potential utility. « Languages not designed to
Automated tools are still at a state where only express business rules
parts of the physical design can be captured » Evidence of business rules
using tools. Although this saves considerable can be misleading
effort manually capturing the same information,
exposures lie in the manual effort and utility of | Capture of physical design
the information captured. The effectiveness of | ¢ Structure charts
reverse engineering a software system can vary | * Call graphs
widely with the technology available (as well as | ¢« Physical data elements
the state of the product and the enterprise
available to do the job (see other sections of Capture of logical design
taxonomy). One key issue that makes reverse ¢ Logical database design
engineering more risky than redocumentation is | ¢ User interface design
the intent that reverse engineered objects are ¢ Communications
placed in a form that can populate a repository architecture
and be manipulated. » Business rules
Manual versus automated
reverse engineering
Evaluating captured objects for
reuse
* Recovered objects may not be
useful or used
14 Forward reengineering exposures to risk are a Evaluating captured objects for

Forward Engineering

function of reverse engineering success.
Methods and tools may be inadequate to
address forward engineering objectives
therefore exposing the effort to costly rework.
When captured artifacts can not be integrated
with the existing structure, they cannot be
shared across the reverse and forward
engineering tools, resulting in extra work
porting the information. Once completed, the
reengineered system may not perform as
anticipated leading to dissatisfaction from the
users and costly optimizations.

reuse in forward engineering
» Adaptability may be low
¢ Usage potential may be low
¢ Understandability may be low

Program and variable labeling/
naming can be terse or
misleading

53

Risk Area

Impact/Ex posure

Example Factoxs

1.5
Translation

Risks associated with software system
translation can vary widely with the type of
translation and the extent of the effort.
Exposures in translation come from lack of
available translation software, poor quality code
to translate (see product risks), major changes
in architecture (e.g., centralized to distributed
client/server), performance incompatibilities,
and unanticipated translation obstacles. Like
the other methods listed, impacts exist where
substantial manual effort is needed to perform
translation. Yet, automated tools often offer
only limited assistance. Translation methods
are typically as mature as the technologies that
they involve; therefore when converting a
system that employs older technology to newer
technology the exposure also includes a product
technology determinant (see product risks).

Language translation issues

+ Incompatibilities

» Coverage

Database translation issues

o Structure incompatibilities

e Data element naming

Platform conversion issues

» Operating system interfaces

« System service coverage

¢+ Intertask communications

Communications conversion
issues '

¢ Protocols

¢ Interfaces

User Interface conversion
issues

¢ Type compatibility (GUI or
CLI)

¢ Mode of control (e.g.,
internal, external, or global)

1.6
Reengineering for
Reuse

Capturing reusable artifacts from an existing
system and populating a reuse repository can
have exposure to risks. The act of capturing
software artifacts can be difficult based on the
type of artifact captured. In the absence of
requirement and design specifications, evidence
must be captured to derive requirements or
construct a valid design which may take
considerable resources to interpret and meet
with limited success. Identifying and capturing
reusable requirements, design, code, and test
components is still a relatively new technology
and may incur considerable risk. Once
captured, the reusable components may need to
be evaluated and adapted for reuse and then
tested. This brings with it more exposure.
Once the component has been placed in the
reuse repository its identification and use can
involve further exposure. Reuse of an artifact
can expose the project where it is reused to any
failures that the component may cause. This is
multiplied across the number of places it is
reused.

Reusable requirements

« Hard to capture from low
level artifacts

¢ Entails risk to forward
engineer

Reusable design component
issues

+ Difficult to capture from code

» Redesign for reuse can be
costly

Reusable code component issues

¢ Costs to reuse and maintain

* Hard to understand how to
use

Reusable test component issues

» Related to other artifacts

» May need considerable
modification to use with
newly reengineered system

May not get reused once
captured

Faulty components create
exposure to failures propor-
tional to utility of reuse

54

Risk Area

Impact/Ex posure

Example Factors

1.7
Migration

Since migration frequently entails more than
one of the other reengineering methods (often
on multiple systems), it is likely to have
considerable exposure to risks. There is often a
strong dependency on business process
reengineering efforts since migration systems
typically have functions that support processes
in multiple organizations. The consolidation of
these functions into one or more systems have
significant impacts on the reengineering effort.
Identifying, capturing, and validating the
software components that support requisite
business functions requires considerable time
and resources. Migrating one system to one
other is the least risky. Migrating multiple
systems to multiple other systems exposes the
effort to very high risk. Once one or more
systems have been reengineered into their
target(s), their data must be harnessed,
translated, and loaded onto the new system,
therefore exposing the effort to further risks.
Risks here include limited automated translation
leading to costly manual effort, corrupted data,
and redundant (and potentially inconsistent)
data.

Migration of multiple systems
into one or more systems

Function allocation is a major
concern for migration

Business process dependency
inherent in migration systems

Data migration is a non-trivial
task

« Identifying data to migrate

* Creating translation
mechanisms

+ Removing redundancies

+ Correcting inconsistencies

Tools

Since tools sometimes automate major portions
of reengineering methods, they can incur some
of the same risks as described above. The most
often seen exposure with reengineering tools is
the dependence on tools that do not perform as
advertised. Not only does this cause
inefficiencies in completing reengineering tasks,
the dialog with the vendor can be time
consuming ultimately causing costly delays.
Many software reengineering tools today are
quite sophisticated and require considerable
knowledge to make full use of them. The
exposure here is that shortcuts may be taken in
training that ultimately cost valuable time
during their use.

Tools that do not perform as
advertised

Use of reengineering tools
without requisite training

Imbalance in utility-cost trade-
off

Appropriateness for the job

55

Risk Area Impact/Exposure Example Factors
2.1 Software reengineering tools provide Capture issues
Capabilities capabilities to capture, translate, store, share, + Identifying artifacts that do
and manipulate software artifacts. However, not exist (over-optimistic or
not all reengineering tools do all of these and in error)
even those that do, do them to varying degrees. | * Not finding requisite artifacts
The exposure here is that a tool employed for (incomplete or at wrong
reengineering may not have the requisite level)
capability to assist in the reengineering effort, » Not organizing and storing
leaving much to be done manually. Even if the objects
capability exists, it may not do it well; therefore | Translation issues
exposing the project to delays and rework. * Not able to translate to
Without a clear understanding of what the tools requisite form
provide, the impact of misuse can be * Partial transformation
significant. To manage reengineering ¢+ Transformation errors
expectations, confidence in tool capability is Language issues
important. Loss of confidence in tools can lead | « Language not covered
to lack of use and increased manual effort. = System services interfaces not
covered
Repository issues
¢ Doesn't use repository or
share data
Integration/Bridging issues
» Tools are not integrated
* No bridges to translate
between tools
22 As with other tools, lack of reengineering tools | Cost issues
Availability in a reengineering effort can lead to reduced « High cost low benefit

quality, performance, and slipped schedules.
Reengineering tools are particularly susceptible
to unavailability because many are relatively
new and immature. Often, functions in these
tools arrive late because features promised are
in "the next release". The reengineering tool
market is growing and aggressive techniques
are being employed to capture that market.
Without full reengineering tool availability
information, there is exposure to mismanaging
technology expectations.

+ Hidden costs not accounted
for (e.g., installation, train-
ing, maintenance, etc.)

Support issues

¢ Limited assistance with
installation

+ Inadequate training and/or
schedules

Platform issues (software or
hardware)

* Not available on platform

* Limited functionality on
platform

Standard issues

» Limited integration standards

» Little or no reengineering
standards

56

Example Factors

Risk Area Impact/Exposure
23 Reengineering technology for data is more Area of application
Maturity mature than for software. Reengineering ¢ Data issues

technology is mature for domains like
management information systems and have
relatively low risk while other domains like
real-time systems have higher risks.
Reengineering tools may be produced by new
ventures looking to capitalize on a growing
need for this technology and may lead to a tool
being less capable than advertised. Without
researching the stability of the tool vendor and
its quality, a project may be exposed to
unanticipated costly delays or failures when the
vendor defaults or resulting from poor tool
quality.

+ Software issues
¢ Domain issues

Vendor stability may be variable

Quality of tool may be low

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

SECTION 4

EXAMPLE USING THE TAXONOMY

During the latter part of Fiscal Year 1992, MITRE assisted the DISA/JIEO/CIM Software
Systems Engineering Directorate and the U.S. Air Forces's weighted Airman Promotion -
System (WAPS) group with a pilot effort for exploring and demonstrating relevant
reengineering technology. WAPS is representative of information systems employed by the
DoD that will need to be migrated into the overall structure of DISA/JIEO/CIM information
systems.

WAPS was a twenty year old COBOL system running on proprietary hardware. It was
maintained by a frequently changing programmer base with widely varying styles of
programming and development. WAPS was developed using little of the software
engineering practices common in current software systems development.

This example will explore how the risk areas identified by the reengineering risks taxonomy
applied to the WAPS reengineering project. Identification of reengineering issues and risks
experienced during the WAPS reengineering project are presented using the format and risk
areas of the reengineering risks taxonomy. The information used in this example was
collected after the completion of the project and as such may provide a more detailed view of
project risk issues than would typically be available to a project manager at project
conception and initiation. The WAPS reengineering project experienced many of the issues
and risks that are typical of converting existing legacy systems to new platforms using new
technology. Table 6 identifies the characteristics of the existing and target system of the.
WAPS reengineering projects.

The interrelationship of the risk issues associated with reengineering are evident by examining
the issues experienced by the WAPS project. Reengineering issues for all the major risk
areas identified by the taxonomy were encountered during the WAPS project. The goals of
the WAPS reengineering project drove the strategy, approach, technique, and tool selection
for the project. The selected approach influenced the processes, personnel, products, and
technology of the project. The data centered approach of the WAPS project placed primary
importance on the need for data modeling skills, database management knowledge, and
supporting tools. The technology used by the project team were determined by the identified
goals, selected approach, and required processes.

It was recognized that WAPS is primarily a management information reporting system and
the technical approach of this effort focused on the database aspects of the system. The key
issues that drove the technical approach toward data reengineering were ineffective data
management and the difficulty of WAPS software changes. The introduction of database
technology enabled the WAPS development and maintenance staff to effectively manage their

59

data and handle continuous changes to the system. The risks associated with the technology
insertion and other related reengineering issues are documented by Table 7.

Table 6. Summary of WAPS Migration Characteristics

Current WAPS Characteristics Target WAPS Characteristics

Language: COBOL-74 => Ada and 4GL
125 programs, ~ 120 KSLOCs

o Platform: Honeywell DPS-8000 => UNIX-based AT&T 3B2
 Data management: "hard-coded" => ORACLE RDBMS
» Software documentation: => DoD-STD-2167A

very limited

Reasons for Modernization » Goals of WAPS Redesign Effort

Reduce maintenance costs

- Increasing maintenance costs

- Inefficient manual processes Automate manual procedures

- Dependent on aging platform Introduce new technology

- No integration Enable future integration

60

Table 7. WAPS Planning Risks Taxonomy Example

The WAPS reengineering project was executed as a complete

redesign that pursued multiple disparate goals and objectives.

The amount and nature of the change attempted by the project
introduced a high degree of risk to the planning risk areas.

Risk Degree: High

Exposure

Mitigation/Impact

Reengineering
Strategy

The WAPS project used what would be
classified as an innovative or radical
strategy for reengineering. The WAPS
project's goals were based on the changing
of the information system's data structures
and platform. These changes necessitated
the reengineering of the majority of the
application's software processes as well .

The total redesign of the system
and change of technology
introduced a large amount of risk,
especially in the areas of schedule
and cost. One of the mechanisms
for mitigating these risks was the
plan to continue to use the existing
system in parallel with the new
system for a period of time.

2
Reengineering
Approach

The reengineering approach used by the
WAPS project team was one of a
complete change to the implementation
with minimal change to the supporting
functions. This approach allowed the
project to focus on technology issues
without also incorporating substantial
change in system functionality.

The selected approach provided
necessary focus to the project but it
prevented the implementation of
functional improvements that were
identified.

3
Reengineering
Goals

The reengineering goals of the WAPS
project were clearly identified to provide
focus to the project and a method of
precisely measuring the project's
achievement. The goals of the WAPS
redevelopment effort were to modernize
the system and its infrastructure to
improve responsiveness to user needs and
to reduce current maintenance costs and
improve system maintainability, reliability,
and portability.

Well-defined goals for the project
provided guidance to the technical
approach and design decisions.

61

Table 7. WAPS Process Risks Taxonomy Example

Process

The software reengineering process used during the WAPS
project was initially extensively a manual process and focused

used.

Risk Degree: Medium/High

on data and database conversion issues. The reverse
engineering and forward engineering activities were able to take
advantage of CASE tools to automate part of the process. The
process risk areas of the WAPS project were exposed to a
medium to high level of risk due to the manual nature of the
majority of the process and the relatively new technologies

Risk Area Exposure Mitigation/Impact
1 The time and effort required to establish The preparation activities of the
Preparation plans and contracts, acquire necessary WAPS project were numerous,
Activities tools and training, and to resolve other with their impact not fully realized

management issues was sizeable. The
project's goals, reengineering strategy, and
approach were clearly defined and well
established at the being of the project.
This enabled the project to continue with a
well-defined direction after initial start-up
delays. Secondary issues such as
analyzing the application portfolio,
obtaining the source code for
reengineering, and analyzing the
application source code proved to be more
labor intensive than anticipated.

until the project was well
underway. Preparation issues
added pressure to the project's
schedule and could have added
substantial additional risk without
the establishment of definitive
project planning procedures.
Without substantial input from
domain experts the project could
have been significantly delayed.

62

Table 7. WAPS Process Risks Taxonomy Example (Continued)
Risk Area Exposure Mitigation/Impact
2 Reverse engineering is an extensively WAPS would have been exposed to
Reverse manual process that introduces a large additional risk during reverse
Engineering amount of risk. The missing and engineering had access to required

nonstandard documentation available for
reverse engineering WAPS contributed to
increasing the risk associated with the
process. The reverse engineering phase of
the process was strongly enhanced by the
availability of an automated reverse
engineering too] that captured identified
data structures from the existing COBOL
source code. The analysis of the captured
objects and abstraction of the objects to a
generalized information model was
facilitated by having both information
engineering and domain knowledge
expertise.

domain knowledge not been
available. The reverse engineering
phase would have been exposed to
considerable risk without a well-
balanced project team and a robust
reverse engineering tool.

3
Forward
Engineering

The forward engineering phase of the
WAPS projects was exposed to minimal
risk due to the limited amount of new
requirements, use of sound software
engineering principles, and adequate
supporting technology. The only
significant risk identified during the
forward engineering phase of the project
was due to the use of new tools and the
systems move to a new platform.

Early identification of the
associated platform and tool risks
through use of a reengineering
taxonomy would have helped to
minimize risk exposure by the
WAPS project. Tool risks were
reduced by vendor training and
knowledge transfer from the
reengineering team's information
engineers.

63

Table 7. WAPS Personnel Risks Taxonomy Example

Personnel

The main risk issues associated with personnel during a reengineering project:
availability, knowledge, experience, training, motivation, and teaming; were
mitigated by the selection and organization of the WAPS project team. This
risk category was of a relatively low exposure to risk during the WAPS project.

Risk Degree: Low

Risk Area Exposure Mitigation/Impact
1 Information engineers, application The only substantial personnel risk
Availability domain experts, and system experts experienced by the WAPS project
were available for the project. was the geographic separation of
project team members. This risk was
mitigated by concentrated working
group meetings and the use of
electronic mail facilities.
2 The WAPS project team had domain
Knowledge knowledge experts, system experts,
Experience/Training and information engineers who were
trained in the methods and tools
necessary for the project.
3 Members of the WAPS project team | The WAPS project was not a threat
Motivation were enthusiastic and well motivated to JOb security and did not attempt to
to meet project goals. implement radical changes to the
organization.
4 The WAPS reengineering projects Periodic status briefings and project
Teaming team had a skill mix that provided all | team meetings enabled the WAPS

necessary elements for successful
project implementation.

project team to stay abreast of project
developments.

64

Table 7. WAPS Product Risks Taxonomy Example

The WAPS main product related risks areas identified by the taxonomy were in
the application characteristics, technical infrastructure, and standards areas. The
WAPS reengineering project converted a medium sized legacy system to a new

platform using minimal system services. The documentation was converted to a
standard (DoD-2167A) format and the data architecture was significantly altered.

Risk Degree: High

Risk Area

Exposure

Mitigation/Impact

1
Application
Characteristics

The existing WAPS application software
requirements and design were not well
documented. Inadequate documentation
presented a risk of misinterpretation and
schedule slippage due to the time spent
attempting to understand the system. The
application software source code was
written in a business language (COBOL)
that is relatively easy to understand and
well supported by tools. However, the
source code was several years old with
added complexity and lacked stability due
to frequent modification.

The lack of application
documentation increased the
project's schedule and the
dependency on domain knowledge
expertise.

2
Technical
Infrastructure
Implications

The WAPS technical infrastructure
presented the highest degree of risk for
the project. WAPS was migrated from a
COBOL file management mainframe
based system to a server based system
using Ada, a fourth generation language,
and a relational database management
system. The number and types of
technical infrastructure components being
changed produced a high-degree of risk.

The WAPS project reengineering tools,
development environment, current system,
and target system each operated on
different platforms. The use of multiple
platforms introduced transfer, conversion,
configuration management, and
performance related risks.

Additional methods, prototyping,
and integration testing could have
been pursued to test components of
the target platform to reduce the
associated risks.

Early identification of technical
infrastructure related risks would
have assisted with development of
an effective configuration
management solution and could
have influenced tool and technique
selection,

65

Table 7. WAPS Product Risks Taxonomy Example (Continued)

Risk Area

Exposure

Mitigation/Impact

3
Standards

WAPS was developed using the
standards and techniques that existed at
the time of inception. These older
standards and techniques increased the
project's risk during the reverse
engineering of the system.

The WAPS project team employed
current software engineering techniques
and standards during the forward
engineering phase of the project.

The use of software engineering
and information management
standards and methodologies would
have reduced the preparation time
and improve the quality of a
reengineering project. The
employment of naming,
programming, and documentation
standards reduce the risk associated
with reverse engineering a system.
The use of current standards during
the forward engineering process
will increase the likelihood that the
new system will exhibit reliability
and stability that should reduce
future maintenance costs. The use
of standards also facilitated the
capture of system components for
future reuse and system integration.

4
Characteristics
of Data

WAPS is a data intensive system that
required extensive employment of data
modeling and design techniques. The
need to abstract a physical and logical
data model from the existing COBOL
file-based system required comprehensive
use of reverse engineering tools and input
from domain experts. Abstracting a
design and requirements from the
existing WAPS was a labor intensive
effort that subjected the project to
increased risk. The relatively large
volume of data associated with WAPS
placed additional requirements on the
development of an effective data
conversion plan.

The project team's data modeling
and design experience and the
availability of tools helped to
mitigate the associated data design
and conversion risks.

Table 7. WAPS Product Risks Taxonomy Example (Concluded)

Risk Area Exposure Mitigation/Impact
5 The lack of an enterprise model and Not integrating the WAPS
Enterprise detailed functional models covering the information model into a detailed
Model information requirements of the WAPS functional model and the
Implications introduced reengineering risks. organization's enterprise model will
Replacing the current WAPS with a new | present the potential for redundant
system using new technology without processes and data structures in the
integrating the design into a detailed future.
functional model and subsequently an
overall enterprise model will impede the
adoption of a shared data environment.
The new system that replaces WAPS will
still have the characteristics of a
stovepipe system that is not integrated
with a wider scope of information
systems.
6 WAPS was a twenty year old legacy WAPS age and lack of
Age system that had been modified documentation required the
extensively. The advanced age of WAPS | presence of additional domain
exposed the project to additional potential | knowledge and the use of
risks. prototyping techniques to reduce
risk exposure.
7 WAPS is expected to provide needed WAPS supports a core business
Intended functionality to the U.S. Air Force for an | operation which is needed to
Longevity extended period of time. This is an support the U.S. Air Force's
indication of the significance of the personnel. Modeling and structured
system to the organization's operations techniques were used by the project
and indicated that it was a candidate to to ensure that a quality system was
use reengineering technology to reduce developed to support this required
the risk of project failure. functionality.
8 WAPS supports the promotion function WAPS is a system critical to the

Importance to
Organization and
Operations

of the entire U.S. Air Force's non-
commissioned officer staff. It is an
important operational system that would
risk the organization's capability to
manage its personnel if its functionality
was not available for an extended period
of time.

U.S. Air Force's personnel function.
This dictated a somewhat
conservative reengineering
approach for the project.

67

Table 7. WAPS Technology Risks Taxonomy Example

Technology

The technology used by the WAPS reengineering project was determined by the
overall goals of the project and the selected approach. The WAPS project was a
reengineering effort that migrated the application to a new latform. The WAPS
project was a data centered project that was relatively well supported by tools and

therefore subject to somewhat less risk.

Risk Degree: Low/Medium

Risk Area Exposure Mitigation/Impact
1 The major risk with the reengineering The reverse engineering risks were
Methods technology used by the WAPS project was | mitigated during the WAPS project

in the area of reverse engineering. The by having adequate availability of
amount of manual intervention required by | domain knowledge and information
the reverse engineering phase of the engineering expertise. ’
WAPS project was not anticipated and
introduced schedule and cost risks to the
project.

2 The data centered approach and the The availability of reverse and

Tools relatively well supported nature of the forward engineering tools for the

implementation language (COBOL)
enabled reverse engineering tools to be
effectively employed by the WAPS
project to minimize risk exposure. The
introduction of new tools and techniques
during the WAPS project required that
adequate training be included in the
project's plan and budget. If training had
not been included in the project plan the
project would have been at risk to costly
delays and improper tool use.

forward engineering tools for the
WAPS project reduced some of the
reengineering risk exposure.

68

The impacts of the reengineering risks were evident during the WAPS project, especially in
the area of preparation. The relatively new technology and techniques used during
reengineering required considerable planning and preparation activities. The preparation
phase of the WAPS project required significant effort that could have been identified by use
of a risks taxonomy. Identification of the risks associated with the preparation activities
would have allowed the project to plan for the activities and resources required.

The WAPS project would have benefited from employment of a reengineering risks taxonomy
by having a clear view of the risks involved with the project. The key risk areas concerning
planning and technology could have been identified earlier and included in the schedule.
Identification and analysis of risk issues are key for mitigating associated risks and could
have been profitably applied during the WAPS project.

69

SECTION 5
CONCLUSION

In this report we examined software reengineering risks in terms of planning for
reengineering, the reengineering process, personnel involved in the reengineering effort,
product considerations, and reengineering technology. Although this was by no means an
exhaustive treatment of software reengineering risks, it is quite comprehensive. This
taxonomy is designed to illuminate many issues critical to a software reengineering effort. It
is intended to assist software reengineering program and project managers in identifying
potential risks for a given situation.

This report summarized the reengineering risks problem; defined risk, software reengineering,
and software maintenance terms; presented an overview of software reengineering; detailed
the software reengineering risks taxonomy in tables for the five key risk categories (planning,
process, personnel, product, and technology). It detailed these risk categories and associated
risk areas in terms of potential exposures and impacts. An example use of the taxonomy was
presented based on the Air Force's Weighted Airman Promotion System (WAPS) that was
reengineering as part of fiscal year 1993 tasking.

DISA/JIEO/CIM is in a position to capitalize on the advancement of reengineering and to
provide leadership in the field with the large number of systems that it plans to migrate.
With this experience, there is a great potential to develop solid experiential models of
software reengineering risks and costs. This taxonomy is a first step to embarking on that
opportunity. One conclusion from this work is that there needs to be more publication of
results in the reengineering field to validate software reengineering risk estimates and
mitigation techniques.

The next step in this work is to validate the software reengineering risks taxonomy against
AIS modernization projects. This will exercise the taxonomy and illuminate issues of its
applicability and useability. Once the taxonomy has matured improvements and has been
demonstrated to be effective at identifying software reengineering risks, it can be distributed
to appropriate organizations for use by a wider audience.

LIST OF REFERENCES

Arnold, R.S., 1986, "Tutorial on Software Restructuring," IEEE Computer Society Press
Tutorial, Catalogue Number EH0244-4.

Amold, R.S. March 1990., "Heuristics for Salvaging Reusable Parts from Ada Source Code,"
Software Productivity Consortium Technical Report Ada_Reuse_Heuristics-90011-N.

Armold, R.S., April 1991, "Risks of Reengineering," Proceedings of Reverse Engineering
Forum, Washington University, St. Louis, MO.

Amold, R.S., April 1992, "Common Risks of Reengineering," IEEE Technical Commitiee on
Software Engineering - Reverse Engineering Newsletter.

Armold, R.S., 1993, "Tutorial on Software Reengineering," IEEE Computer Society Press
Tutorial, Order Number 3272-01.

Biggerstaff, T.J., July 1989, "Design Recovery for Maintenance and Reuse," IEEE Computer.

Boehm, B.W., 1989, "Software Risk Management," IEEE Computer Society Press Tutorial,
Catalogue Number EH-0291-5, Pages 1-16.

Bohner, S., Fall 1992, "Software Maintenance: Sustaining Software Assets," Information
Systems Engineering Journal, MITRE Publication.

Bush, E., CASE for Existing Systems, white paper, originally available from Language
Technology, Inc., 27 Congress St., Salem, MA, 01970.

Charette, R.N., 1989, Software Engineering Risk Analysis and Management, McGraw-Hill
Book Company, New York, NY, 1989.

Chikofsky, E.J., and J.H. Cross, January 1990, "Reverse Engineering and Design Recovery:
A Taxonomy," IEEE Software, pp.13-17.

Chittister, C., R. Kirkpatrick, and R. Van Scoy, September 1992, "Risk Management in
Practice," American Programmer, Vol.5, No.7, pp.30-35.

Davenport, T.H., 1993, Process Innovation - Reengineering Work through Information
Technology, Harvard Business School Press, Boston, MA.

DISA/CIM, Reengineering Division, May 1993a, Center for Information M anagement
Information Systems Criteria for Applying Software Reengineering, Defense Information
Systems Agency, Joint Interoperability Engineering Organization, Center for Information
Management, Software Systems Engineering Directorate, Arlington, VA, 22204-2199.

71

DISA/CIM, Reengineering Division, May 1993, Center for Information Management Software
Systems Reengineering Process Model - Version 1.0, Defense Information Systems Agency,
Joint Interoperability Engineering Organization, Center for Information Management, Software
Systems Engineering Directorate, Arlington, VA, 22204-2199.

Functional Process Improvement: Functional Management Process for Implementing the.
Information Management Program of the Department of Defense, DoD 8020.1-M (Draft),
Director of Defense Information, Office of the Secretary of Defense, August 1992.

Garnett, E.S. and J.A. Mariani, May 1990, "Software reclamation,” IEEE Software
Engineering Journal, pp.185-191.

Horowitz, B.M., July 1991, The Importance of Software Architecture in DoD Software,
MITRE Publication M91-35, Bedford, MA.

Proceedings of the First Software Reengineering W orkshop, Santa Barbara I, 21-25 September
1992, Department of Defense Joint Logistics Commanders Joint Policy Coordinating Group

on Computer Resources Management.

Lehman, M.M. September 1980, "Programs, Life Cycles, and Laws of Software Evolution,"
Proceedings of the IEEE, Vol.68, No.9.

Lientz, B.P., and E.B. Swanson, 1980, Software Maintenance Management, Addison-Wesley,
Reading, MA.

Medek, M. and H.G. Boylan, March 1992, Data Integration and Migration Issues, MITRE
Technical Letter to DISA/CIM, TL-3910-92-008.

Risk Management, Concepts, and Guidance, March 1989, Defense Systems Management
College publication, Fort Belvoir, VA.

Rochester, J.B. and David P. Douglas, October 1991, "Re-engineering Existing Systems," I/S
Analyzer, United Communications Group, Vol. 29, No.10.

Rowe, W.D., An Anatomy of Risk, 1988, Robert E. Krieger Publishing Co., Malabar Fl.

Sherer, S., 1990, "Evaluation of Software Maintenance Risks," Proceedings of the Conference
on Software Maintenance.

Sneed, H.M., July/August 1991, "Economics of Software Re-engineering," Journal of
Software Maintenance.

Sneed, H.M., October 1991, "Bank Application Reengineering and Conversion at the Union
Bank of Switzerland," Proceeding of Conference on Software Maintenance, pp.60-72.

72

Strassman, P.A., September 1992, "Shadow Warriors: Software Risk Management From the
DoD Perspective," American Programmer, Vol. 5, No.7, pp.44-53.

System Safety Standard for Space and Missile Systems, August 1970, MIL-STD-1574, United
States Department of Defense Military Standard 1574.

Ulrich, W., November/December 1990 and May/June 1991, "Re-engineering: Defining an
Integrated Migration Framework", CASE Trends, four part series.

73

THIS PAGE INTENTIONALLY LEFT BLANK

74

Access methods 48

Add new requirements 35

Age 49, 67

Analyze application portfolio 29

Analyze cost and benefit of
reengineering effort 31

Analyze objects for reuse 34

Application characteristics 42, 65

Application domain expertise 39

Availability 38, 54, 62

Build reengineering team 33

Capabilities 54

Capture objects 33

Change functionality 25

Characteristics of data 47, 66

Common reengineering strategies 21

Conceptual model 47

Conduct post-reengineering
assessment 36

Configuration management 46

Continued maintenance 1, 2

Cost creep 2, 3

COTS Products 45

Design 43

Develop reengineering plans 31
Development environment 46
Documentation 44

Enterprise model implications 49, 67

Establish goals 29

Establish support for reengineering
effort 31

Evaluate application 30

Extemal risk 5

Forward engineering 6, 7, 10, 14, 28,

34, 49, 51, 63

INDEX

Host/Target platforms 45

Importance to organization and
operations 50, 67

Incorporation of standards 25

Incremental improvement strategy 21

Infrastructure modemization 25

Innovative strategy 21

Integrating captured objects to construct

new system 35

Intended longevity 49, 67

Intemal risk 5

Knowledge - experience/training 38, 63
Logical model 47

Maintainability 7, 24

Manage reengineering acquisition 33
Maturity 57

Methods 52, 68

Metrics 13

Migrate Existing Data 36

Mignation 6, 17, 51, 55
Modemization 24

Motivation 40, 62

Obtain application 30

Personnel risk 36, 37, 64
Physical model 48

Planning risk 21, 23, 61
Portability 25

Preparation 29, 60
Preparation risk 27
Preparation activities 29
Prepare objects for reuse 34
Process risk 26, 29, 59
Program/System knowledge 39
Product risk 41, 65

Redevelopment 1, 2, 3, 5, 7, 25

Redocumentation 6, 11, 12, 50, 51

Reengineering 2, 11, 15

Reengineering approach 23, 59

Reengineering cost 2

Reengineering existing AIS 2

Reengineering expertise 40

Reengineering for reuse 5, 6, 11, 15, 17,

28, 33, 34, 51, 54

Reengineering goals 24, 59

Reengineering platform 46

Reengineering strategy 21, 23, 59

Reimplement system fo reengineer
in the future 35

Reliability 24

Repository load 26

Requirements 43

Restructuring 6, 11, 12, 50, 5, 521

Reuse libraries 44

Reverse engineering 6, 11, 14, 15,

26, 33, 48, 51, 62

Risk analysis 5

Risk areas 19, 20

Risk categories 19, 20

Risk identification 4, 5

Risk management 5

Risk terms 4

Select reengineering strategy 30

Select reengineering technology 32

Software 42

Software development life cycle 10

Software Engineering Institute 4

Software maintenance terms 4, 6, 70

Software reengineering terms 5

Software risk 4

Software Systems reengineering process
model 26

Source code 43

Standards 46, 66

System integration 26

Tactical strategy 21

76

Teaming 41, 64

Technical infrastructure
implications 45, 65

Technology risk 50, 51, 52

Test material 44

Tools 55, 68

Translation 6, 14, 22, 54

Use of system services 46
Volume of data 48

WAPS 7, 59, 60, 70

